

MEGA65 TEAM

Assoc. Prof. Paul Gardner-
Stephen
(highlander)
Founder
Software and virtual hardware architect
Spokesman and lead scientist

Martin Streit
(seriously)
Video and photo production
Tax and organization
Social media

Dan Sanderson
(dddaaannn)
Media and documentation
MEGA65.ROM

Dr. Edilbert Kirk
(Bit Shifter)
MEGA65.ROM
Manual and tools

Gábor Lénárt
(LGB)
Emulator

Farai Aschwanden
(Tayger)
Filehost and tools
Financial advisory

Falk Rehwagen
(bluewaysw)
GEOS

Robert Steffens
(kibo)
Network technology
Core bug hunting

Detlef Hastik
(deft)
Co-founder
General manager
Marketing and sales

Oliver Graf
(lydon)
Release management
VHDL and platform enhancements

Antti Lukats
(antti-brain)
Host hardware design and production

Dieter Penner
(doubleflash)
Host hardware support

Mirko H.
(sy2002)
Additional platforms and consulting

Gürçe Işıkyıldız
(gurce)
Tools and enhancements

Daniel England
(Mew Pokémon)
Additional code and tools

Hernán Di Pietro
(indiocolifa)
Additional emulation and tools

Roman Standzikowski
(FeralChild)
Open ROMs

Anton Schneider-Michallek
(adtbm)
Presentation and support

Reporting Errors and Omissions

This book is being continuously refined and improved upon by the MEGA65 community.
The version of this edition is:

c o m m i t 06 a 3 5 d 2 8 5 1 7 6 7 b 1 d 9 a 5 6 0 c 8 c 3 3 b 3 b 7 a 1 7 7 0 f 5 e 4 a

date : Sun May 5 1 5 : 3 3 : 2 5 2024 + 0 9 3 0

We want this book to be the best that it possibly can. So if you see any errors, find
anything that is missing, or would like more information, please report them using the
MEGA65 User’s Guide issue tracker:

https://github.com/mega65/mega65-user-guide/issues
You can also check there to see if anyone else has reported a similar problem, while
you wait for this book to be updated.

Finally, you can always download the latest versions of our suite of books from these
locations:

• https://mega65.org/mega65-book
• https://mega65.org/user-guide
• https://mega65.org/developer-guide
• https://mega65.org/basic65-ref
• https://mega65.org/chipset-ref
• https://mega65.org/docs

https://github.com/mega65/mega65-user-guide/issues
https://mega65.org/mega65-book
https://mega65.org/user-guide
https://mega65.org/developer-guide
https://mega65.org/basic65-ref
https://mega65.org/chipset-ref
https://mega65.org/docs

MEGA65 BASIC 65 REFERENCE

Published by
the MEGA Museum of Electronic Games & Art e.V., Germany.

WORK IN PROGRESS

Copyright ©2019 – 2024 by Paul Gardner-Stephen, the MEGA Museum of Electronic
Games & Art e.V., and contributors.

This book is made available under the GNU Free Documentation License v1.3, or later,
if desired. This means that you are free to modify, reproduce and redistribute this book,
subject to certain conditions. The full text of the GNU Free Documentation License
v1.3 can be found at https://www.gnu.org/licenses/fdl-1.3.en.html.
Implicit in this copyright license, is the permission to duplicate and/or redistribute this
document in whole or in part for use in education environments. We want to support
the education of future generations, so if you have any worries or concerns, please
contact us.

May 5, 2024

ii

https://www.gnu.org/licenses/fdl-1.3.en.html

Contents

iv

1 Introduction 1

Welcome to the MEGA65! . 3

Other Books in this series . 4

Come Join Us! . 4

2 BASIC 65 Command Reference 1

Commands, Functions, and Operators . 3

BASIC Command Reference . 18

3 Screen Codes 275

Screen Codes . 277

4 PETSCII Codes 279

PETSCII Codes and CHR$. 281

5 Screen Editor Keys 285

Screen Editor Keys . 287

Control codes . 287

Shifted codes . 290

Escape Sequences . 290

6 System Palette 295

System Palette . 297

7 Supporters & Donors 299

Organisations . 301

Contributors . 302

Supporters . 303

INDEX 313

v

vi

CHAPTER 1
Introduction

• Welcome to the MEGA65!

• Other Books in this series

• Come Join Us!

2

WELCOME TO THE MEGA65!
Congratulations on your purchase of one of the most long-awaited computers in the
history of computing! The MEGA65 is community designed, and based on the never-
released Commodore® 651 computer; a computer designed in 1989 and intended
for public release in 1990. Decades have passed, and we have endeavoured to invoke
memories of an earlier time when computers were simple and friendly. They were not
only simple to operate and understand, but friendly and approachable for new users.

These 1980s computers inspired many of their owners to pursue the exciting and re-
warding technology careers they have today. Just imagine the exhilaration these early
computing pioneers experienced, as they learned they could use their new computer
to solve problems, write a letter, prepare taxes, invent new things, discover how the
universe works, and perhaps even play an exciting game or two! Wewant to re-awaken
that same level of excitement (which alas, is no longer found in modern computing),
so we have created the MEGA65.

The MEGA65 team believes that owning a computer is like owning a home. You don’t
just use a home; you change things, big and small, to make it your own custom living
space. After a while, when you settle in, you may decide to renovate or expand your
home to make it more comfortable, or provide more utility. Think of the MEGA65 as
your very own “computing home”.

This guide will teach you how to do more than just hang pictures on a wall; it will show
you how to build your dream home. While you read this user’s guide, you will learn
how to operate the MEGA65, write programs, add additional software, and extend
hardware capabilities. What won’t be immediately obvious is that along the journey,
you will also learn about the history of computing as you explore the many facets of
BASIC version 65 and operating system commands.

Computer graphics and music make computing more fun, and we designed the
MEGA65 to be fun! In this user’s guide, you will learn how to write programs using
the MEGA65’s built-in graphics and sound capabilities. But you don’t need to be a
programmer to have fun with the MEGA65. Because the MEGA65 includes a com-
plete Commodore® 64™2, it can also run thousands of existing games, utilities, and
business software packages, as well as new programs being written today by Com-
modore computer enthusiasts. Excitement for the MEGA65 will grow as we all witness
the programming marvels our MEGA65 community create, as they (and you!) discover
and master the powerful capabilities of this modern Commodore computer recre-
ation. Together, we can build a new “homebrew” community, teeming with software
and projects that push the MEGA65’s capabilities far beyond what anyone thought
would be possible.

We welcome you on this journey! Thank you for becoming a part of the MEGA65
community of users, programmers, and enthusiasts!

1Commodore is a trademark of C= Holdings
2Commodore 64 is a trademark of C= Holdings

3

OTHER BOOKS IN THIS SERIES
This book is one of several within the MEGA65 documentation suite. The series in-
cludes:

• The MEGA65 User’s Guide
Provides an introduction to the MEGA65, and a condensed BASIC 65 command
reference

• The MEGA65 BASIC 65 Reference
Comprehensive documentation of all BASIC 65 commands, functions and oper-
ators

• The MEGA65 Chipset Reference
Detailed documentation about the MEGA65 and C65’s custom chips

• The MEGA65 Developer’s Guide
Information for developers who wish to write programs for the MEGA65

• The MEGA65 Complete Compendium
(Also known as The MEGA65 Book)
All volumes in a single huge PDF for easy searching. 1200 pages and growing!

COME JOIN US!
Get involved, learn more about your MEGA65, and join us online at:

• https://mega65.org/chat
• https://mega65.org/forum

4

https://mega65.org/chat
https://mega65.org/forum

CHAPTER 2
BASIC 65 Command Reference
• Commands, Functions, and Operators

• BASIC Command Reference

2

COMMANDS, FUNCTIONS, AND
OPERATORS
This appendix describes each of the commands, functions, and other callable elements
of BASIC 65, which is an enhanced version of BASIC 10. Some of these can take one
or more arguments, which are pieces of input that you provide as part of the command
or function call, to help describe what you want to achieve. Some also require that
you use special words.

Below is an example of how commands, functions, and operators (all of which are also
known as keywords) will be described in this appendix.

KEY number, string

Here, KEY is a keyword. Keywords are special words that BASIC understands. In this
manual, keywords are always written in BOLDCAPITALS, so that you can easily recog-
nise them.

The “number” and “string” (in non-bold text) are examples of arguments. You replace
these with values or algebraic phrases (expressions) that represent the data that con-
trols the command’s behavior.

Punctuation and other letters in bold text represent other characters that are typed as
they appear. In this example, a comma must appear between the number argument
and the string argument.

Here is an example of using the KEY command based on this pattern:

KEY 8 ," LIST "+ CHR$ (13)

When you see square brackets around arguments, this indicates that the arguments are
optional. You are not meant to type the square brackets. Consider this description of
the CIRCLE command, which accepts optional arguments:

CIRCLE xc, yc, radius [, flags , start, stop]

The following examples of the CIRCLE command are both valid. They have different
behavior based on their different arguments.

C I R C L E 100 ,150 ,30

C I R C L E 100 ,150 ,30 ,0 ,45 ,135

This arrangement of keywords, symbols, and arguments is called syntax. If you leave
something out, or put the wrong thing in the wrong place, the computer will fail to
understand the command and report a syntax error.

3

There is nothing to worry about if you get an error from the MEGA65. It is just the
MEGA65’s way of telling you that something isn’t quite right, so that you can more
easily find and fix the problem. For example, if you omit the comma in the KEY com-
mand, or replace it with a period, the MEGA65 will respond with a ?SYNTAX ERROR:

4

R E A D Y .

KEY 8" FISH "

? S Y N T A X E R R O R

R E A D Y .

KEY 8." FISH "

? S Y N T A X E R R O R

R E A D Y .

Expressions can be a number value such as 23.7, a string value such as "HELLO", or a
more complex calculation that combines values, functions, and operators to describe
a number or string value: "LIST"+CHR$(13)

It is important to use the correct type of expression when writing your programs. If you
accidentally use the wrong type, the MEGA65 will display a ?TYPE MISMATCH ERROR, to say that
the type of expression you gave doesn’t match what it expected. For example, the
following command results in a ?TYPE MISMATCH ERROR, because "POTATO" is a string expression,
and a numeric expression is expected:

KEY " P O T A T O " ," SOUP "

Commands are statements that you can use directly from the READY. prompt, or from
within a program, for example:

R E A D Y .

P R I N T " H E L L O "

H E L L O

R E A D Y .

10 P R I N T " H E L L O "

RUN

H E L L O

You can place a sequence of statements within a single line by separating them with
colons, for example:

P R I N T " H E L L O " : P R I N T " HOW ARE YOU ?" : P R I N T " HOW IS THE W E A T H E R ?"

H E L L O

HOW ARE YOU ?

HOW IS THE W E A T H E R ?

Direct Mode Commands

Some commands only work in direct mode (sometimes called “immediate mode”).
This means that the command can’t be part of a BASIC program, but can be entered

5

directly to the screen. For example, the RENUMBER command only works in direct
mode, because its function is to renumber the lines of a BASIC program.

In the two PRINT examples above, the first was entered in direct mode, whereas the
second one was part of a program. The PRINT command works in both direct mode
and in a program.

Command Syntax Descriptions

The following table describes the other symbols found in command syntax descriptions.

Symbol Meaning

[] Optional

… The bracketed syntax can be repeated zero or more
times

< | > Include one of the choices

[|] Optionally include one of the choices

{ , }

One or more of the arguments is required. The
commas to the left of the last argument included are
required. Trailing commas must be omitted. See
CURSOR for an example.

[{ , }] Similar to { , } but all arguments can be omitted

Fonts

Examples of text that appears on the screen, either typed by you or printed by the
MEGA65, appear in the screen font: "LIST"+CHR$(13)

6

BASIC 65 Constants

Values that are typed directly into an expression or program are called constants.
The values are “constant” because they do not change based on other aspects of the
program state.

The following are types of constants that can appear in a BASIC 65 expression.

Type Example Example
Decimal Integer 32000 -55

Decimal Fixed Point 3.14 -7654.321

Decimal Floating Point 1.5E03 7.7E-02

Hex $D020 $FF

Binary %11010010 %101

String "X" "TEXT"

BASIC 65 Variables

A program manipulates data by storing values in the computer’s memory, referring to
stored values, and updating them based on logic. In BASIC, elements of memory that
store values are called variables. Each variable has a name, there are separate sets
of variable names for each type of value.

For example, the variable AA can store a number value. The variable AA$ can store a string
value. Commodore BASIC considers these to be separate variables, even though the
names both begin with AA.

One way to store a value in a variable is with the assignment = operator. For example:

AA = 1.95

AA$ = " HELLO , "

Variable names must start with a letter, and contain only letters and numbers. They
can be of any length, but Commodore BASIC only recognizes the first two letters of
the name. SPEED and SP would be considered the same variable.

Variable names cannot contain any of the BASIC keywords. This makes using long
names difficult: it is easy to use a keyword accidentally. For example, ENFORCEMENT is not
a valid variable name, because FOR is a keyword. It is common to use short variable
names to avoid these hazards.

A variable can be used within an expression with other constants, variables, functions,
and operators. It is substituted with the value that it contains at that point in the
program’s execution.

10 I N P U T " WHAT IS YOUR NAME "; NA$

20 MSG$ = " HELLO , "+ NA$ +"!"

20 P R I N T MSG$

7

Unlike some programming languages, BASIC variables do not need to be declared
before use. A variable has a default value of zero for number type variables, or the
empty string ("") for string type variables.

A variable that stores a single value is also known as a scalar variable. The scalar
variable types and their value ranges are as follows.

Type Name Symbol Range Example
Byte & 0 .. 255 BY& = 23

Integer % -32768 .. 32767 I% = 5

Real none -1E37 .. 1E37 XY = 1/3

String $ length = 0 .. 255 AB$ = "TEXT"

A variable whose name is a single letter followed by the type symbol (or no symbol
for real number variables) is a fast variable. BASIC 65 stores the variable in a way
that makes it faster to access or update the value than variables with longer names.
It otherwise behaves like any other variable. This is also true for functions defined by
DEF FN.

BASIC 65 Arrays

In addition to scalar variables, Commodore BASIC also supports a type of variable that
can store multiple values, called an array.

The following example stores three string values in an array, then uses a FOR loop to
PRINT a message for each element:

10 DIM NA$ (3)

20 NA$ (0) = " DEFT "

30 NA$ (1) = " G A R D N E R S "

40 NA$ (2) = " L Y D O N "

50 FOR I =0 TO 3

60 P R I N T " HELLO , "; NA$ (I) ; " ! "

70 NEXT I

Each value in an array is referenced by the name of the array variable and an integer
index. For example, AA(7) refers to the element of the array named AA() with index 7.
Indexes are “zero-based:” the first element in the array has an index of 0. The index
can be a numeric expression, which can be a powerful way to operate on multiple
elements of data.

All values in an array must be of the same type. The type is indicated in the name of
the variable, similar to scalar variables. AA() is an array of real numbers, AA$() is an array
of strings.

Array variable names are considered separate from scalar variable names. The scalar
variable AA has no relationship to the array variable AA().

8

BASIC needs to know the maximum size of the array before its first use, so that it
can allocate the memory for the complete array. A program can declare an array’s
size using the DIM keyword, with the “dimensions” of the array. If an array variable is
used without an explicit declaration, BASIC allocates a one-dimensional array of 10
elements, and the array cannot be re-dimensioned later (unless you CLR all variables).

An array can have multiple dimensions, each with its own index separated by a comma.
The array must be declared with the maximum value for each dimension. Keep in
mind that BASIC 65 allocates memory for the entire array, so large arrays may be
constrained by available memory.

DIM BO$ (3 ,3)

BO$ (1 ,1) = " X "

BO$ (0 ,0) = " O "

BO$ (0 ,2) = " X "

BO$ (1 ,0) = " O "

Screen Text and Colour Arrays

A BASIC 65 program can place text on the screen in several ways. The PRINT command
displays a string at the current cursor location, which is especially useful for terminal-
like output. The CURSOR command moves the cursor to a given position. A program
can use these commands together to draw pictures or user interfaces.

A program can access individual characters on the screen using the special built-in
arrays T@&() andC@&(). These arrays are two-dimensional with indexes corresponding
to the column and row of each character on the screen, starting from (0,0) at the top
left corner.

T@&(column, row) is the screen code of the character. Screen codes are not the same
as PETSCII codes. See appendix 3 on page 277 for a list of screen codes.

C@&(column, row) is the colour code of the character. This is an entry number of the
system palette. See appendix 6 on page 297 for the list of colours in the default
system palette. Upper bits also set text attributes, such as blinking.

Like regular arrays, the screen and colour array entries can be assigned new values,
or used in expressions to refer to their current values.

10 FOR X =10 TO 30

20 T@ &(X , 2) = 1

30 C@ &(X ,2)= INT (RND (1) * 1 6)

40 NEXT X

50 P R I N T " C O L O U R AT P O S I T I O N 15: "; C@ &(15 ,2)

The dimensions of these arrays depend on the current text screen mode. In 80 × 25
text mode, the column is in the range 0 – 79, and the row is in the range 0 – 24. The
MEGA65 also supports 80 × 50 and 40 × 25 text modes.

9

BASIC 65 Operators

An operator is a symbol or keyword that performs a function in an expression. It oper-
ates on one or two sub-expressions, called operands. The operator and its operands
evaluate to the result of the operation.

For example, the * (asterisk) operator performs a multiplication of two number
operands. The operator and its operands evaluate to the result of the multiplication.

A =6

P R I N T A *7

The + (plus) operator has a different meaning depending on the type of the operands.
If both operands are numbers, then the operator performs an addition of the numbers.
If both operands are strings, then the operator evaluates to a new string that is the
concatenation of the operands.

A =64

P R I N T A +1

A$ =" MEGA "

P R I N T A$ + " 6 5 "

The - (minus) operator accepts either one operand or two operands. Given one number
operand on the right-hand side, it evaluates to the negation of that number. Given
two number operands, one on either side, it evaluates to the subtraction of the second
operand from the first operand.

A =64

P R I N T - A

P R I N T A -16

The = symbol is used both as an assignment statement and as a relational operator. As
an assignment, the = symbol is a statement that updates the value of a variable. The
left-hand side must be a variable or array element reference, and its type must match
the type of the expression on the right-hand side. The assignment is not an operator:
it is not part of an expression.

AA =7

NA$ =" DEFT "

As a relational operator, the = symbol behaves as an expression. It evaluates the ex-
pressions on both sides of the operator, then tests whether the values are equal. If they
are equal, the equality operator evaluates to −1, BASIC’s representation of “true.” If
they are not equal, the operator evaluates to 0, or “false.” The equality expression can

10

be used with an IF statement to control program flow, or it can be used as part of a
numeric expression. Both expressions must be of the same type.

100 IF X =99 THEN 130

110 X = X +1

120 GOTO 100

130 P R I N T " DONE ."

BASIC 65 knows the difference between assignment and equality based on context.
Consider this line of code:

A = B = 10

BASIC 65 expects a statement, and notices a variable name followed by the = symbol.
It concludes that this is a statement assigning a value to the number variable A. It then
expects a number expression on the right-hand side of the assignment, and notices
the = symbol is an operator in that expression. It concludes that the operation is an
equality test, and proceeds to evaluate the expression and assign the result.

The operators NOT, AND, OR and XOR can be used either as logical operators or as
boolean operators. A logical operator joins two conditional expressions as operands
and evaluates to the logical comparison of their truth values.

IF X =99 OR Y <5 THEN 130

IF Y >10 AND Y <20 THEN 150

A boolean operator accepts two number operands and performs a calculation on the
bits of the binary values.

A =17

P R I N T A AND 20

Unlike other cases where operators have different behaviors based on how they are
used, BASIC 65 does not need to determine whether these operators are behaving as
logical operators or boolean operators. Because “true” and “false” are represented
by carefully chosen numbers, the logical operators have the same behavior whether
their operands are conditional expressions or numbers. A “true” conditional expression
is the number −1, which internally is a binary number with all bits set. The logical
expression “true and false” is equivalent to the binary boolean expression %....0000
& %....1111. In this case, the AND operator evaluates to 0, which is “false.”

Conditional expressions evaluating to numbers can be used in some clever program-
ming tricks. Consider this example:

A = A - (B > 7)

11

This statement will increment the value in the A by 1 if the value in B is greater than 7.
Otherwise it leaves it unchanged. If the sub-expression B > 7 is true, then it evaluates
to -1. A - (-1) is equivalent to A + 1. If the sub-expression is false, then it evaluates to 0,
and A - 0 is equivalent to A.

When multiple operators are used in a single expression, the order in which they are
evaluated is specified by precedence. For example, in the statement A * A - B * B, both
multiplications will be performed first, then the subtraction. As in algebra, you can
use parentheses to change the order of execution. In the expression A * (A - B) * B, the
subtraction is performed first.

The complete set of operators and their order of precedence are summarised in the
sections that follow.

Assignment Statement

Symbol Description Examples
= Assignment A = 42, A$ = "HELLO", A = B < 42

Unary Mathematical Operators

Name Symbol Description Example
Plus + Positive sign A = +42

Minus - Negative sign B = -42

Binary Mathematical Operators

Name Symbol Description Example
Plus + Addition A = B + 42

Minus - Subtraction B = A - 42

Asterisk * Multiplication C = A * B

Slash / Division D = B / 13

Up Arrow ↑ Exponentiation E = 2 ↑ 10

Left Shift << Left Shift A = B << 2

Right Shift >> Right Shift A = B >> 1

NOTE: The ↑ character used for exponentiation is entered with ↑ , which is next to
RESTORE .

12

Relational Operators

Symbol Description Example
> Greater Than A > 42

>= Greater Than or Equal To B >= 42

< Less Than A < 42

<= Less Than or Equal To B <= 42

= Equal A = 42

<> Not Equal B <> 42

Logical Operators

Keyword Description Example
AND And A > 42 AND A < 84

OR Or A > 42 OR A = 0

XOR Exclusive Or A > 42 XOR B > 42

NOT Negation C = NOT A > B

Boolean Operators

Keyword Description Example
AND And A = B AND $FF

OR Or A = B OR $80

XOR Exclusive Or A = B XOR 1

NOT Negation A = NOT 22

String Operator

Name Symbol Description Operand type Example
Plus + Concatenates Strings String A$ = B$ + ".PRG"

Operator Precedence

Precedence Operators
High ↑

+ - (Unary Mathematical)
* /

+ - (Binary Mathematical)
<< >> (Arithmetic Shifts)
< <= > >= = <>

NOT

AND

Low OR XOR

13

Keywords And Tokens Part 1

* AC COLLECT F3 EXP BD
+ AA COLLISION FE17 FAST FE25
- AB COLOR E7 FGOSUB FE48
/ AD CONCAT FE13 FGOTO FE47
< B3 CONT 9A FILTER FE03
<< FE52 COPY F4 FIND FE2B
= B2 COS BE FN A5
> B1 CURSOR FE41 FONT FE46
>> FE53 CUT E4 FOR 81
ABS B6 DATA 83 FOREGROUND FE39
AND AF DCLEAR FE15 FORMAT FE37
APPEND FE0E DCLOSE FE0F FRE B8
ASC C6 DEC D1 FREAD# FE1C
ATN C1 DEF 96 FREEZER FE4A
AUTO DC DELETE F7 FWRITE# FE1E
BACKGROUND FE3B DIM 86 GCOPY FE32
BACKUP F6 DIR EE GET A1
BANK FE02 DISK FE40 GO CB
BEGIN FE18 DLOAD F0 GOSUB 8D
BEND FE19 DMA FE1F GOTO 89
BIT FE4E DMODE FE35 GRAPHIC DE
BLOAD FE11 DO EB HEADER F1
BOOT FE1B DOPEN FE0D HELP EA
BORDER FE3C DOT FE4C HEX$ D2
BOX E1 DPAT FE36 HIGHLIGHT FE3D
BSAVE FE10 DSAVE EF IF 8B
BUMP CE03 DVERIFY FE14 INFO FE4D
BVERIFY FE28 ECTORY FE29 INPUT 85
CATALOG FE0C EDIT FE45 INPUT# 84
CHANGE FE2C EDMA FE21 INSTR D4
CHAR E0 ELLIPSE FE30 INT B5
CHDIR FE4B ELSE D5 JOY CF
CHR$ C7 END 80 KEY F9
CIRCLE E2 ENVELOPE FE0A LEFT$ C8
CLOSE A0 ERASE FE2A LEN C3
CLR 9C ERR$ D3 LET 88
CMD 9D EXIT ED LINE E5

14

Keywords And Tokens Part 2

LIST 9B PRINT 99 SOUND DA
LOAD 93 PRINT# 98 SPC(A6
LOADIFF FE43 PUDEF DD SPEED FE26
LOCK FE50 RCOLOR CD SPRCOLOR FE08
LOG BC RCURSOR FE42 SPRITE FE07
LOG10 CE08 READ 87 SPRSAV FE16
LOOP EC RECORD FE12 SQR BA
LPEN CE04 REM 8F STEP A9
MEM FE23 RENAME F5 STOP 90
MERGE E6 RENUMBER F8 STR$ C4
MID$ CA RESTORE 8C SYS 9E
MKDIR FE51 RESUME D6 TAB(A3
MOD CE0B RETURN 8E TAN C0
MONITOR FA RGRAPHIC CC TEMPO FE05
MOUNT FE49 RIGHT$ C9 THEN A7
MOUSE FE3E RMOUSE FE3F TO A4
MOVSPR FE06 RND BB TRAP D7
NEW A2 RPALETTE CE0D TROFF D9
NEXT 82 RPEN D0 TRON D8
NOT A8 RPLAY CE0F TYPE FE27
OFF FE24 RREG FE09 UNLOCK FE4F
ON 91 RSPCOLOR CE07 UNTIL FC
OPEN 9F RSPEED CE0E USING FB
OR B0 RSPPOS CE05 USR B7
PAINT DF RSPRITE CE06 VAL C5
PALETTE FE34 RUN 8A VERIFY 95
PASTE E3 RWINDOW CE09 VIEWPORT FE31
PEEK C2 SAVE 94 VOL DB
PEN FE33 SAVEIFF FE44 VSYNC FE54
PIXEL CE0C SCNCLR E8 WAIT 92
PLAY FE04 SCRATCH F2 WHILE FD
POINTER CE0A SCREEN FE2E WINDOW FE1A
POKE 97 SET FE2D WPEEK CE10
POLYGON FE2F SGN B4 WPOKE FE1D
POS B9 SIN BF XOR E9
POT CE02 SLEEP FE0B ^ AE

15

Tokens And Keywords Part 1

80 END A5 FN CA MID$
81 FOR A6 SPC(CB GO
82 NEXT A7 THEN CC RGRAPHIC
83 DATA A8 NOT CD RCOLOR
84 INPUT# A9 STEP CF JOY
85 INPUT AA + D0 RPEN
86 DIM AB - D1 DEC
87 READ AC * D2 HEX$
88 LET AD / D3 ERR$
89 GOTO AE ^ D4 INSTR
8A RUN AF AND D5 ELSE
8B IF B0 OR D6 RESUME
8C RESTORE B1 > D7 TRAP
8D GOSUB B2 = D8 TRON
8E RETURN B3 < D9 TROFF
8F REM B4 SGN DA SOUND
90 STOP B5 INT DB VOL
91 ON B6 ABS DC AUTO
92 WAIT B7 USR DD PUDEF
93 LOAD B8 FRE DE GRAPHIC
94 SAVE B9 POS DF PAINT
95 VERIFY BA SQR E0 CHAR
96 DEF BB RND E1 BOX
97 POKE BC LOG E2 CIRCLE
98 PRINT# BD EXP E3 PASTE
99 PRINT BE COS E4 CUT
9A CONT BF SIN E5 LINE
9B LIST C0 TAN E6 MERGE
9C CLR C1 ATN E7 COLOR
9D CMD C2 PEEK E8 SCNCLR
9E SYS C3 LEN E9 XOR
9F OPEN C4 STR$ EA HELP
A0 CLOSE C5 VAL EB DO
A1 GET C6 ASC EC LOOP
A2 NEW C7 CHR$ ED EXIT
A3 TAB(C8 LEFT$ EE DIR
A4 TO C9 RIGHT$ EF DSAVE

16

Tokens And Keywords Part 2

F0 DLOAD FE09 RREG FE2F POLYGON
F1 HEADER FE0A ENVELOPE FE30 ELLIPSE
F2 SCRATCH FE0B SLEEP FE31 VIEWPORT
F3 COLLECT FE0C CATALOG FE32 GCOPY
F4 COPY FE0D DOPEN FE33 PEN
F5 RENAME FE0E APPEND FE34 PALETTE
F6 BACKUP FE0F DCLOSE FE35 DMODE
F7 DELETE FE10 BSAVE FE36 DPAT
F8 RENUMBER FE11 BLOAD FE37 FORMAT
F9 KEY FE12 RECORD FE39 FOREGROUND
FA MONITOR FE13 CONCAT FE3B BACKGROUND
FB USING FE14 DVERIFY FE3C BORDER
FC UNTIL FE15 DCLEAR FE3D HIGHLIGHT
FD WHILE FE16 SPRSAV FE3E MOUSE

CE02 POT FE17 COLLISION FE3F RMOUSE
CE03 BUMP FE18 BEGIN FE40 DISK
CE04 LPEN FE19 BEND FE41 CURSOR
CE05 RSPPOS FE1A WINDOW FE42 RCURSOR
CE06 RSPRITE FE1B BOOT FE43 LOADIFF
CE07 RSPCOLOR FE1C FREAD# FE44 SAVEIFF
CE08 LOG10 FE1D WPOKE FE45 EDIT
CE09 RWINDOW FE1E FWRITE# FE46 FONT
CE0A POINTER FE1F DMA FE47 FGOTO
CE0B MOD FE21 EDMA FE48 FGOSUB
CE0C PIXEL FE23 MEM FE49 MOUNT
CE0D RPALETTE FE24 OFF FE4A FREEZER
CE0E RSPEED FE25 FAST FE4B CHDIR
CE0F RPLAY FE26 SPEED FE4C DOT
CE10 WPEEK FE27 TYPE FE4D INFO
FE02 BANK FE28 BVERIFY FE4E BIT
FE03 FILTER FE29 ECTORY FE4F UNLOCK
FE04 PLAY FE2A ERASE FE50 LOCK
FE05 TEMPO FE2B FIND FE51 MKDIR
FE06 MOVSPR FE2C CHANGE FE52 <<
FE07 SPRITE FE2D SET FE53 >>
FE08 SPRCOLOR FE2E SCREEN FE54 VSYNC

17

BASIC COMMAND REFERENCE

18

ABS
Token: $B6

Format: ABS(x)

Returns: The absolute value of the numeric argument x.

x numeric argument (integer or real expression)

Remarks: The result is of type real.

Example: Using ABS

PRINT ABS(-123)

123

PRINT ABS(4.5)

4.5

PRINT ABS(-4.5)

4.5

19

AND
Token: $AF

Format: operand AND operand

Usage: Performs a bit-wise logical AND operation on two 16-bit values.

Integer operands are used as they are. Real operands are converted to a
signed 16-bit integer (losing precision). Logical operands are converted
to 16-bit integer using $FFFF (decimal -1) for TRUE, and $0000 (decimal
0) for FALSE.

Expression Result
0 AND 0 0

0 AND 1 0

1 AND 0 0

1 AND 1 1

Remarks: The result is of type integer. If the result is used in a logical context,
the value of 0 is regarded as FALSE, and all other non-zero values are
regarded as TRUE.

Examples: Using AND

PRINT 1 AND 3

1

PRINT 128 AND 64

0

AND can be used in IF statements to require multiple conditions.

IF (C >= 0 AND C < 256) THEN PRINT "BYTE VALUE"

20

APPEND
Token: $FE $0E

Format: APPEND# channel, filename [,D drive] [,U unit]

Usage: Opens an existing sequential file of type SEQ or USR for writing, and
positions the write pointer at the end of the file.

channel number, where:

• 1 <= channel <= 127 line terminator is CR.

• 128 <= channel <= 255 line terminator is CR LF.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: APPEND# works similarly to DOPEN#... ,W, except that the file must al-
ready exist. The content of the file is retained, and all printed text is
appended to the end. Trying to APPEND to a non-existing file reports a
DOS error.

Examples: Open existing file in append mode:

APPEND#5,"DATA",U9

APPEND#130,(DD$),U(UN%)

APPEND#3,"USER FILE,U"

APPEND#2,"DATA BASE"

21

ASC
Token: $C6

Format: ASC(string)

Returns: The PETSCII code of the first character of the string argument, as a num-
ber.

Remarks: ASC returns zero for an empty string. This is different to BASIC 2, which
raised an error for ASC("").

The inverse function to ASC is CHR$. Refer to the CHR$ function on
page 47 for more information.

The name was apparently chosen to be a mnemonic to “ASCII,” but the
returned value is a PETSCII code.

Examples: Using ASC

PRINT ASC("MEGA")

77

PRINT ASC("")

0

22

ATN
Token: $C1

Format: ATN(numeric expression)

Returns: The arc tangent of the argument.

The result is in the range (−π/2 to π/2)

Remarks: A multiplication of the result with 180/π converts the value to the unit
”degrees”. ATN is the inverse function to TAN.

Examples: Using ATN

PRINT ATN(0.5)

.463647609

PRINT ATN(0.5) * 180 / ~

26.5650512

23

AUTO
Token: $DC

Format: AUTO [step]

Usage: Enables or disables automatic line numbering during BASIC program en-

try. After submitting a new program line to the BASIC editor with RETURN ,
the AUTO function generates a new BASIC line number for the entry of
the next line. The new number is computed by adding step to the current
line number.

step line number increment

Typing AUTO with no argument disables it.

Examples: Using AUTO

AUTO 10 : USE AUTO WITH INCREMENT 10

AUTO : SWITCH AUTO OFF

24

BACKGROUND
Token: $FE $3B

Format: BACKGROUND colour

Usage: Sets the background colour of the screen.

colour the palette entry number, in the range 0 – 255

All colours within this range are customisable via the PALETTE command.
On startup, the MEGA65 only has the first 32 colours configured. See
appendix 6 on page 297 for the list of colours in the default system
palette.

Example: Using BACKGROUND

BACKGROUND 3 : REM SELECT BACKGROUND COLOUR CYAN

25

BACKUP
Token: $F6

Format: BACKUP U source TO U target
BACKUP D source TO D target [,U unit]

Usage: Copies one disk to another.

The first form of BACKUP, specifying units for source and target, can
only be used for the drives connected to the internal FDC (Floppy Disk
Controller). Units 8 and 9 are reserved for this controller. These can
be either the internal floppy drive (unit 8) and another floppy drive (unit
9) attached to the same ribbon cable, or mounted D81 disk images.
BACKUP can be used to copy from floppy to floppy, floppy to image,
image to floppy and image to image, depending on image mounts and
the existence of a second physical floppy drive.

The second form of BACKUP, specifying drives for source and target, is
meant to be used for dual drive units connected to the IEC bus. For
example: CBM 4040, 8050, 8250 via an IEEE-488 to IEC adapter. In
this case, the backup is then done by the disk unit internally.

source unit or drive # of source disk.
target unit or drive # of target disk.

Remarks: The target disk will be formatted and an identical copy of the source disk
will be written.
BACKUP cannot be used to backup from internal devices to IEC devices
or vice versa.

Examples: Using BACKUP

BACKUP U8 TO U9 : REM BACKUP INTERNAL DRIVE 8 TO DRIVE 9

BACKUP U9 TO U8 : REM BACKUP DRIVE 9 TO INTERNAL DRIVE 8

BACKUP D0 TO D1, U10 : REM BACKUP ON DUAL DRIVE CONNECTED VIA IEC

26

BANK
Token: $FE $02

Format: BANK bank number

Usage: Selects the memory configuration for BASIC commands that use 16-bit
addresses. These are LOAD, LOADIFF, PEEK, POKE, SAVE, SYS, and
WAIT. Refer to the system memory map in the MEGA65 Book, System
Memory Map (Appendix I) for more information.

Remarks: A value > 127 selects memory mapped I/O. The default value at system
startup for the bank number is 128. This configuration has RAM from
$0000 to $1FFF, the BASIC and KERNAL ROM, and I/O from $2000 to
$FFFF.

Example: Using BANK

BANK 1 :REM SELECT MEMORY CONFIGURATION 1

27

BEGIN
Token: $FE $18

Format: BEGIN ... BEND

Usage: The beginning of a compound statement to be executed after THEN or
ELSE. This overcomes the single line limitation of the standard IF ... THEN
... ELSE clause.

Remarks: Do not jump with GOTO or GOSUB into a compound statement, as it
may lead to unexpected results.

Example: Using BEGIN and BEND

10 GET A$

20 IF A$>="A" AND A$<="Z" THEN BEGIN

30 PW$=PW$+A$

40 IF LEN(PW$)>7 THEN 90

50 BEND :REM IGNORE ALL EXCEPT (A-Z)

60 IF A$<>CHR$(13) GOTO 10

90 PRINT "PW=";PW$

28

BEND
Token: $FE $19

Format: BEGIN ... BEND

Usage: The end of a compound statement to be executed after THEN or ELSE.
This overcomes the single line limitation of the standard IF ... THEN ...
ELSE clause.

Remarks: The example below shows a quirk in the implementation of the compound
statement. If the condition evaluates to FALSE, execution does not re-
sume right after BEND as it should, but at the beginning of the next line.
Test this behaviour with the following program:

Example: Using BEGIN and BEND

10 IF Z > 1 THEN BEGIN:A$="ONE"

20 B$="TWO"

30 PRINT A$;" ";B$;:BEND:PRINT " QUIRK"

40 REM EXECUTION RESUMES HERE FOR Z <= 1

29

BLOAD
Token: $FE $11

Format: BLOAD filename [,B bank] [,P address] [,R] [,D drive] [,U unit]

Usage: Loads a file of type PRG into RAM at address P. (“Binary load.”)

BLOAD has two modes: The flat memory address mode can be used to
load a program to any address in the 28-bit (256MB) address range
where RAM is installed. This includes the standard RAM banks 0 to 5, as
well as the 8MB of ”attic RAM” at address $8000000.

This mode is triggered by specifying an address at parameter P that is
larger than $FFFF. The bank parameter is ignored in this mode.

For compatibility reasons with older BASIC versions, BLOAD accepts the
syntax with a 16-bit address at P and a bank number at B as well. The
attic RAM is out of range for this compatibility mode.

The optional parameter R (RAW MODE) does not interpret or use the first
two bytes of the program file as the load address, which is otherwise the
default behaviour. In RAW MODE every byte is read as data.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement will be used.

address overrides the load address that is stored in the first two bytes
of the PRG file.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: BLOAD cannot cross bank boundaries.

BLOAD uses the load address from the file if no P parameter is given.

Examples: Using BLOAD

30

BLOAD "ML DATA", B0, U9

BLOAD "SPRITES"

BLOAD "ML ROUTINES", B1, P32768

BLOAD (FI$), B(BA%), P(PA), U(UN%)

BLOAD "CHUNK",P($8000000) :REM LOAD TO ATTIC RAM

31

BOOT
Token: $FE $1B

Format: BOOT filename [,B bank] [,P address] [,D drive] [,U unit]
BOOT SYS
BOOT

Usage: Loads and runs a program or boot sector from a disk.

BOOT filename loads a file of type PRG into RAM at address P and bank
B, and starts executing the code at the load address.

BOOT SYS loads the boot sector (512 bytes in total) from sector 0, track
1 and unit 8 to address $0400 in bank 0, and performs a JSR $0400 after-
wards (Jump To Subroutine).

BOOT with no parameters attempts to load and execute a file named
AUTOBOOT.C65 from the default unit 8. It’s short for RUN ”AUTO-
BOOT.C65”.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement, will be used.

address overrides the load address, that is stored in the first two bytes
of the PRG file.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Examples: Using BOOT

BOOT SYS

BOOT (FI$), B(BA%), P(PA), U(UN%)

BOOT

32

BORDER
Token: $FE $3C

Format: BORDER colour

Usage: Sets the border colour of the screen.

colour the palette entry number, in the range 0 – 255

All colours within this range are customisable via the PALETTE command.
See appendix 6 on page 297 for the list of colours in the default system
palette.

Example: Using BORDER

10 BORDER 4 : REM SELECT BORDER COLOUR PURPLE

33

BOX
Token: $E1

Format: BOX x0,y0, x2,y2 [, solid]
BOX x0,y0, x1,y1, x2,y2, x3,y3 [, solid]

Usage: Bitmap graphics: draws a box.

The first form of BOX with two coordinate pairs and an optional solid
parameter draws a simple rectangle, assuming that the coordinate pairs
declare two diagonally opposite corners.

The second formwith four coordinate pairs declares a path of four points,
which will be connected with lines. The path is closed by connecting the
last coordinate with the first.

The quadrangle is drawn using the current drawing context set with
SCREEN, PALETTE and PEN. The quadrangle is filled if the parameter
solid is not 0.

Remarks: BOX can be used with four coordinate pairs to draw any shape that can
be defined with four points, not only rectangles. For example rhomboids,
kites, trapezoids and parallelograms. It is also possible to draw bow tie
shapes.

Examples: Using BOX

BOX 0,0, 160,0, 160,80, 0,80

BOX 0,0, 160,80, 160,0, 0,80

BOX 20,0, 140,0, 160,80, 0,80

34

35

BSAVE
Token: $FE $10

Format: BSAVE filename, P start TO P end [,B bank] [,D drive] [,U unit]

Usage: Saves a memory range to a file of type PRG. (“Binary save.”)

BSAVE has two modes: The flat memory address mode can be used to
save a memory block in the 28-bit (256MB) address range where RAM
is installed. This includes the standard RAM banks 0 to 5, as well as the
8MB of ”attic RAM” at address $8000000.

This mode is triggered by specifying addresses for the start and end pa-
rameter P, that are larger than $FFFF. The bank parameter is ignored in
this mode. This flat memory mode allows saving ranges greater than 64K.

For compatibility reasons with older BASIC versions, BSAVE accepts the
syntax with 16-bit addresses at P and a bank number at B as well. The
attic RAM is out of range for this compatibility mode. This mode cannot
cross bank boundaries, so start and end address must be in the same
bank.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$). If the first character of the file-
name is an at sign ’@’, it is interpreted as a ”save and replace” operation.
It is not recommended to use this option on 1541 and 1571 drives, as
they contain a ”save and replace bug” in their DOS.

start the first address, where the saving begins. It also becomes the load
address, which is stored in the first two bytes of the PRG file.

end address where the saving ends. end-1 is the last address to be used
for saving.

bank the RAM bank to be used. If not specified, the current bank, as set
with the last BANK statement, will be used.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: The length of the file is end - start + 2.
If the number after an argument letter is not a decimal number, it must be
set in parenthesis, as shown in the third and fourth line of the examples.

The PRG file format that is used by BSAVE requires the load address to
be written to the first two bytes. If the saving is done with a bank number

36

that is not zero, or a start address greater than $FFFF, this information
will not fit. For compatibility reasons, only the two low order bytes are
written. Loading the file with the BLOAD command will then require the
full 16-bit range of the load address as a parameter.

Examples: Using BSAVE

BSAVE "ML DATA", P 32768 TO P 33792, B0, U9

BSAVE "SPRITES", P 1536 TO P 2058

BSAVE "ML ROUTINES", B1, P($9000) TO P($A000)

BSAVE (FI$), B(BA%), P(PA) TO P(PE), U(UN%)

37

BUMP
Token: $CE $03

Format: BUMP(type)

Returns: A bitfield of sprites currently colliding with other sprites (type=1) or screen
data (type=2).

Each bit set in the returned value indicates that the sprite corresponding
to that bit position was involved in a collision since the last call of BUMP.
Calling BUMP resets the collision mask, so you will always get a summary
of collisions encountered since the last call of BUMP.

Remarks: It’s possible to detect multiple collisions, but you will need to evaluate
the sprite coordinates to detect which sprites have collided.

Example: Using BUMP

10 S% = BUMP(1) : REM SPRITE-SPRITE COLLISION

20 IF (S% AND 6) = 6 THEN PRINT "SPRITE 1 & 2 COLLISION"

30 REM ---

40 S% = BUMP(2) : REM SPRITE-DATA COLLISION

50 IF (S% <> 0) THEN PRINT "SOME SPRITE HIT DATA REGION"

Sprite Return Mask
0 1 0000 0001
1 2 0000 0010
2 4 0000 0100
3 8 0000 1000
4 16 0001 0000
5 32 0010 0000
6 64 0100 0000
7 128 1000 0000

38

BVERIFY
Token: $FE $28

Format: BVERIFY filename [,P address] [,B bank] [,D drive] [,U unit]

Usage: Compares a memory range to a file of type PRG. (“Binary verify.”)

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement, will be used.

address is the address where the comparison begins. If the parameter
P is omitted, it is the load address that is stored in the first two bytes of
the PRG file that will be used.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: BVERIFY can only test for equality. It gives no information about the
number, or position of different valued bytes. In direct mode BVERIFY
exits either with the message OK or with VERIFY ERROR. In program mode, a
VERIFY ERROR either stops execution or enters the TRAP error handler,
if active.

Examples: Using BVERIFY

BVERIFY "ML DATA", P 32768, B0, U9

BVERIFY "SPRITES", P 1536

BVERIFY "ML ROUTINES", B1, P(DEC("9000"))

BVERIFY (FI$), B(BA%), P(PA), U(UN%)

39

CATALOG
Token: $FE $0C

Format: CATALOG [filepattern] [,W] [,R] [,D drive] [,U unit]
$ [filepattern] [,W] [,R] [,D drive] [,U unit]

Usage: Prints a file catalog/directory of the specified disk.

The W (Wide) parameter lists the directory three columns wide on the
screen and pauses after the screen has been filled with a page (63 di-
rectory entries). Pressing any key displays the next page.

The R (Recoverable) parameter includes files in the directory which are
flagged as deleted but still recoverable.

filepattern is either a quoted string, for example: "DA*" or a string expres-
sion in brackets, e.g. (DI$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: CATALOG is a synonym of DIRECTORY and DIR, and produces the same
listing. The filepattern can be used to filter the listing. The wildcard
characters * and ? may be used. Adding ,T= to the pattern string, with T
specifying a filetype of P, S, U or R (for PRG, SEQ, USR, REL) filters the
output to that filetype.

The shortcut symbol $ can only be used in direct mode.

Examples: Using CATALOG

CATALOG

0 "BLACK SMURF " BS 2A

508 "STORY PHOBOS" SEQ

27 "C8096" PRG

25 "C128" PRG

104 BLOCKS FREE.

CATALOG "*,T=S"

0 "BLACK SMURF " BS 2A

508 "STORY PHOBOS" SEQ

104 BLOCKS FREE.

40

Below is an example showing how a directory looks with the wide pa-
rameter:

DIR W

0 "BASIC EXAMPLES "

1 "BEGIN" P 1 "FREAD" P 2 "PAINT.COR" P

1 "BEND" P 1 "FRE" P 3 "PALETTE.COR" P

1 "BUMP" P 2 "GET#" P 1 "PEEK" P

1 "CHAR" P 1 "GETKEY" P 3 "PEN" P

1 "CHR$" P 1 "GET" P 1 "PLAY" P

4 "CIRCLE" P 2 "GOSUB" P 2 "POINTER" P

1 "CLOSE" P 2 "GOTO.COR" P 1 "POKE" P

1 "CLR" P 2 "GRAPHIC" P 1 "POS" P

2 "COLLISION" P 1 "HELP" P 1 "POT" P

1 "CURSOR" P 1 "IF" P 1 "PRINT#" P

0 "DATA BASE" R 2 "INPUT#" P 1 "PRINT" P

1 "DATA" P 2 "INPUT" P 1 "RCOLOR.COR" P

1 "DEF FN" P 2 "JOY" P 1 "READ" P

1 "DIM" P 1 "LINE INPUT#" P 1 "RECORD" P

1 "DO" P 3 "LINE" P 1 "REM" P

5 "ELLIPSE" P 1 "LOOP" P 1 "RESTORE" P

1 "ELSE" P 1 "MID$" P 1 "RESUME" P

1 "EL" P 1 "MOD" P 1 "RETURN" P

1 "ENVELOPE" P 1 "MOVSPR" P 1 "REVERS" S

2 "EXIT" P 1 "NEXT" P 3 "RGRAPHIC" P

1 "FOR" P 2 "ON" P 1 "RMOUSE" P

41

CHANGE
Token: $FE $2C

Format: CHANGE /findstring/ TO /replacestring/ [, line range]
CHANGE ”findstring” TO ”replacestring” [, line range]

Usage: Edits the BASIC program that is currently in memory to replace all in-
stances of one string with another.

An optional line range limits the search to this range, otherwise the en-
tire BASIC program is searched. At each occurrence of the findstring,
the line is listed and the user is prompted for an action:

• Y RETURN perform the replace and find the next string

• N RETURN do not perform the replace and find the next string

• * RETURN replace the current and all following matches

• RETURN exit the command, and don’t replace the current match

Remarks: Almost any character that is not part of the string, including letters and
punctuation, can be used instead of /.

However, using the double quote character finds text strings that are not
tokenised, and therefore not part of a keyword.
For example, CHANGE "LOOP" TO "OOPS" will not find the BASIC keyword LOOP, be-
cause the keyword is stored as a token and not as text. However CHANGE

/LOOP/ TO /OOPS/ will find and replace it (possibly causing SYNTAX ERRORs).

Due to a limitation of the BASIC parser, CHANGE is unable to match the
REM and DATA keywords. See FIND.

Can only be used in direct mode.

Examples: Using CHANGE

CHANGE "XX$" TO "UU$", 2000-2700

CHANGE /IN/ TO /OUT/

CHANGE &IN& TO &OUT&

42

CHAR
Token: $E0

Format: CHAR column, row, height,width, direction, string [, address of character
set]

Usage: Bitmap graphics: displays text on a graphic screen.

column (in units of character positions) is the start position of the output
horizontally. As each column unit is 8 pixels wide, a screen width of 320
has a column range of 0 – 39, while a screen width of 640 has a column
range of 0 – 79.

row (in pixel units) is the start position of the output vertically. In contrast
to the column parameter, its unit is in pixels (not character positions), with
the top row having the value of 0.

height is a factor applied to the vertical size of the characters, where 1
is normal size (8 pixels), 2 is double size (16 pixels), and so on.

width is a factor applied to the horizontal size of the characters,
where 1 is normal size (8 pixels) 2 is double size (16 pixels), and so on.
direction controls the printing direction:

• 1 up

• 2 right

• 4 down

• 8 left

The optional address of character set can be used to select a charac-
ter set, different to the default character set at $29800, which includes
upper and lower case characters.

Three character sets (see also FONT) are available:

• $29000 Font A (ASCII)

• $3D000 Font B (Bold)

• $2D000 Font C (CBM)

The first part of the font (upper case / graphics) is stored at $xx000 –
$xx7FF.

The second part of the font (lower case / upper case) is stored at $xx800
– $xxFFF.

string is a string constant or expression which will be printed. This string
may optionally contain one or more of the following control characters:

43

Expression Keyboard Shortcut Description
CHR$(2) CTRL+B Blank Cell
CHR$(6) CTRL+F Flip Character
CHR$(9) CTRL+I AND With Screen
CHR$(15) CTRL+O OR With Screen
CHR$(24) CTRL+X XOR With Screen
CHR$(18) RVSON Reverse
CHR$(146) RVSOFF Reverse Off
CHR$(147) CLR Clear Viewport
CHR$(21) CTRL+U Underline
CHR$(25)+"-" CTRL+Y + ”-” Rotate Left
CHR$(25)+"+" CTRL+Y + ”+” Rotate Right
CHR$(26) CTRL+Z Mirror
CHR$(157) Cursor Left Move Left
CHR$(29) Cursor Right Move Right
CHR$(145) Cursor Up Move Up
CHR$(17) Cursor Down Move Down

Notice that the start position of the string has different units in the hor-
izontal and vertical directions. Horizontal is in columns and vertical is in
pixels.

Refer to the CHR$ function on page 47 for more information.

Remarks:Example: Using CHAR

10 SCREEN 640,400,2

20 CHAR 28,180,4,4,2,"MEGA65",$29000

30 GETKEY A$

40 SCREEN CLOSE

Will print the text ”MEGA65” at the centre of a 640 x 400 graphic screen.

44

CHARDEF
Token: $E0 $96

Format: CHARDEF index, bit-matrix

Usage: Changes the appearance of a character.

index is the screen code of the character to change (@:0, A:1, B:2, ...).
See appendix 3 on page 277 for a list of screen codes.

bit-matrix is a set of 8 byte values, which define the raster representa-
tion for the character from top row to bottom row. If more than 8 values
are used as arguments, the values 9 – 16 are used for the character
index+1, 17 – 24 for index+2, etc.

Remarks: The character bitmap changes are applied to the VIC character gener-
ator, which resides in RAM at the address $FF7E000.

All changes are volatile and the VIC character set can be restored by a
reset or by using the FONT command.

Examples: Using CHARDEF

CHARDEF 1,$FF,$81,$81,$81,$81,$81,$81,$FF :REM CHANGE 'A' TO RECTANGLE

CHARDEF 9,$18,$18,$18,$18,$18,$18,$18,$00 :REM MAKE 'I' SANS SERIF

45

CHDIR
Token: $FE $4B

Format: CHDIR dirname [,U unit]

Usage: Changes the current working directory.

dirname the name of a directory. Either a quoted string such as "SOMEDIR",
or a string expression in brackets such as (DR$).

Dependent on the unit, CHDIR is applied to different filesystems.

UNIT 12 is reserved for the SD-Card (FAT filesystem). This command can
be used to navigate to subdirectories and mount disk images that are
stored there. CHDIR ”..”,U12 changes to the parent directory on UNIT
12.

For other units managed by CBDOS (typically 8 and 9), CHDIR is used
to change into or out of subdirectories on floppy or disk image of type
D81. Existing subdirectories are displayed as filetype CBM in the parent
directory, they are created with the command MKDIR. CHDIR ”/”,U unit
changes to the root directory.

Examples: Using CHDIR

CHDIR "ADVENTURES",U12 :REM ENTER ADVENTURES ON SD CARD

CHDIR "..",U12 :REM GO BACK TO PARENT DIRECTORY

CHDIR "RACING",U12 :REM ENTER SUBDIRECTORY RACING

0 "MEGA65 " 1D

800 "MEGA65 GAMES" CBM

800 "MEGA65 TOOLS" CBM

600 "BASIC PROGRAMS" CBM

960 BLOCKS FREE.

CHDIR "MEGA65 GAMES",U8 :REM ENTER SUBDIRECTORY ON FLOPPY DISK

CHDIR "/",U8 :REM GO BACK TO ROOT DIRECTORY

46

CHR$
Token: $C1

Format: CHR$(numeric expression)

Returns: A string containing one character of the given PETSCII value.

Remarks: The argument range is from 0 – 255, so this function may also be used
to insert control codes into strings. Even the NULL character, with code
0, is allowed.
CHR$ is the inverse function to ASC. The complete table of characters
(and their PETSCII codes) is on page 281.

Example: Using CHR$

10 QUOTE$ = CHR$(34)

20 ESCAPE$ = CHR$(27)

30 PRINT QUOTE$;"MEGA65";QUOTE$: REM PRINT "MEGA65"

40 PRINT ESCAPE$;"Q"; : REM CLEAR TO END OF LINE

47

CIRCLE
Token: $E2

Format: CIRCLE xc, yc, radius [, flags , start, stop]

Usage: Bitmap graphics: draws a circle.

This is a special case of ELLIPSE, using the same value for horizontal and
vertical radius.

xc the x coordinate of the centre in pixels

yc the y coordinate of the centre in pixels

radius the radius of the circle in pixels

flags controls filling, arcs and the position of the 0 degree angle. Default
setting (zero) is don’t fill, draw legs and the 0 degree radian points to 3
o’ clock.
Bit Name Value Action if set
0 fill 1 Fill circle or arc with the current pen colour
1 legs 2 Suppress drawing of the legs of an arc
2 combs 4 Let the zero radian point to 12 o’ clock

The units for the start- and stop-angle are degrees in the range of 0 to
360. The 0 radian starts at 3 o’ clock and moves clockwise. Setting bit
2 of flags (value 4) moves the zero-radian to the 12 o’ clock position.

start start angle for drawing an arc

stop stop angle for drawing an arc

Remarks: CIRCLE is used to draw circles on screens with an aspect ratio of 1:1
(for example: 320 x 200 or 640 x 400). Whilst using other resolutions
(such as 640 x 200), the shape will be an ellipse instead.

The example program uses the random number function RND for circle
colour, size and position. So it shows a different picture for each run.

48

49

Example: Using CIRCLE

100 REM CIRCLE (AFTER F.BOWEN)

110 BORDER 0 :REM BLACK

120 SCREEN 320,200,4 :REM SIMPLE SCREEN SETUP

130 PALETTE 0,0,0,0,0 :REM BLACK

140 PALETTE 0,1,RND(.)*16,RND(.)*16,15 :REM RANDOM COLOURS

150 PALETTE 0,2,RND(.)*16,15,RND(.)*16

160 PALETTE 0,3,15,RND(.)*16,RND(.)*16

170 PALETTE 0,4,RND(.)*16,RND(.)*16,15

180 PALETTE 0,5,RND(.)*16,15,RND(.)*16

190 PALETTE 0,6,15,RND(.)*16,RND(.)*16

200 SCNCLR 0 :REM CLEAR

210 FORI=0TO32 :REM CIRCLE LOOP

220 PEN 0,RND(.)*6+1 :REM RANDOM PEN

230 R=RND(.)*36+1 :REM RADIUS

240 XC=R+RND(.)*320:IF(XC+R)>319THEN240:REM X CENTRE

250 YC=R+RND(.)*200:IF(YC+R)>199THEN250:REM Y CENTRE

260 CIRCLE XC,YC,R,. :REM DRAW

270 NEXT

280 GETKEY A$:REM WAIT FOR KEY

290 SCREEN CLOSE:BORDER 6

50

CLOSE
Token: $A0

Format: CLOSE channel

Usage: Closes an input or output channel.

channel number, which was given to a previous call of commands such
as APPEND, DOPEN, or OPEN.

Remarks: Closing files that have previously been opened before a program has
completed is very important, especially for output files. CLOSE flushes
output buffers and updates the directory information on disks. Failing to
CLOSE can corrupt files and disks. BASIC does not automatically close
channels nor files when a program stops.

Example: Using CLOSE

10 OPEN 2,8,2,"TEST,S,W"

20 PRINT#2,"TESTSTRING"

30 CLOSE 2 : REM OMITTING CLOSE GENERATES A SPLAT FILE

51

CLR
Token: $9C

Format: CLR
CLR variable

Usage: Clears BASIC variable memory.

After executingCLR, all variables and arrays will be undeclared. The run-
time stack pointers and the table of open channels are also reset. RUN
performs CLR automatically.

CLR variable clears (zeroes) the variable. variable can be a numeric
variable or a string variable, but not an array.

Remarks: CLR should not be used inside loops or subroutines, as it destroys the
return address. AfterCLR, all variables are unknown andwill be initialised
when they are next used.

Example: Using CLR

10 A=5: P$="MEGA65"

20 CLR

30 PRINT A;P$

RUN

0

52

CLRBIT
Token: $9C $FE $4E

Format: CLRBIT address, bit number

Usage: Clears (resets) a single bit at the address.

If the address is in the range of $0000 to $FFFF (0 – 65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

The bit number is a value in the range of 0 – 7.

Remarks: CLRBIT is a short version of using a bitwise AND to clear a bit, but you
can only clear one bit at a time. Refer to SETBIT to set a bit instead.

Example: Using CLRBIT

10 BANK 128 :REM SELECT SYSTEM MAPPING

20 CLRBIT $D011,4 :REM DISABLE DISPLAY

30 CLRBIT $D016,3 :REM SWITCH TO 38 OR 76 COLUMN MODE

53

CMD
Token: $9D

Format: CMD channel [, string]

Usage: Redirects the standard output from screen to a channel.

This enables you to print listings and directories to other output channels.
It is also possible to redirect this output to a disk file, or a modem.

channel number, which was given to a previous call of commands such
as APPEND, DOPEN, or OPEN.

The optional string is sent to the channel before the redirection begins
and can be used, for example, for printer or modem setup escape se-
quences.

Remarks: The CMD mode is stopped with PRINT#, or by closing the channel with
CLOSE. It is recommended to use PRINT# before closing to make sure
that the output buffer has been flushed.

Example: Using CMD to print a program listing:

OPEN 1,4 :REM OPEN CHANNEL #1 TO PRINTER AT UNIT 4

CMD 1

LIST

PRINT#1

CLOSE 1

54

COLLECT
Token: $F3

Format: COLLECT [,D drive] [,U unit]

Usage: Rebuilds the Block Availability Map (BAM) of a disk, deleting splat files
(files which have been opened, but not properly closed) and marking
unused blocks as free.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: While this command is useful for cleaning a disk from splat files, it is
dangerous for disks with boot blocks or random access files. These blocks
are not associated with standard disk files and will therefore be marked
as free and may be overwritten by further disk write operations.

Examples: Using COLLECT

COLLECT

COLLECT U9

COLLECT D0, U9

55

COLLISION
Token: $FE $17

Format: COLLISION type [, line number]

Usage: Enables or disables a user-programmed interrupt handler for sprite col-
lision.

With a handler enabled, a sprite collision of the given type interrupts the
BASIC program and performs a GOSUB to line number. This handler
must give control back with RETURN.

type the collision type for this interrupt handler:

Type Description
1 Sprite - Sprite Collision
2 Sprite - Data - Collision
3 Light Pen

line number the line number of a subroutine which handles the sprite
collision and ends with RETURN

A call without the line number argument disables the handler.

Remarks: It is possible to enable the interrupt handler for all types, but only one
can execute at any time. An interrupt handler cannot be interrupted by
another interrupt handler. Functions such as BUMP, LPEN and RSPPOS
may be used for evaluation of the sprites which are involved, and their
positions.

Info: COLLISION wasn’t completed in BASIC 10. It is available in BASIC 65.

Example: Using COLLISION

10 COLLISION 1,70 : REM ENABLE

20 SPRITE 1,1 : MOVSPR 1,120, 0 : MOVSPR 1,0#5

30 SPRITE 2,1 : MOVSPR 2,120,100 : MOVSPR 2,180#5

40 FOR I=1 TO 50000:NEXT

50 COLLISION 1 : REM DISABLE

60 END

70 REM SPRITE <-> SPRITE INTERRUPT HANDLER

80 PRINT "BUMP RETURNS";BUMP(1)

90 RETURN: REM RETURN FROM INTERRUPT

56

COLOR
Token: $E7

Format: COLOR colour

Usage: Sets the foreground text colour for subsequent PRINT commands.

colour the palette entry number, in the range 0 – 31

See appendix 6 on page 297 for the list of colours in the default system
palette.

Remarks: This is another name for FOREGROUND.

Example: Using COLOR

COLOR 2

PRINT "THIS IS RED"

COLOR 3

PRINT "THIS IS CYAN"

57

CONCAT
Token: $FE $13

Format: CONCAT appendfile [,D drive] TO targetfile [,D drive] [,U unit]

Usage: Appends (concatenates) the contents of the file appendfile to the file
targetfile. Afterwards, targetfile contains the contents of both files,
while appendfile remains unchanged.

appendfile is either a quoted string, for example: "DATA" or a string ex-
pression in brackets, for example: (FI$)

targetfile is either a quoted string, for example: "SAFE" or a string expres-
sion in brackets, for example: (FS$)

If the disk unit has dual drives, it is possible to apply CONCAT to files
which are stored on different disks. In this case, it is necessary to specify
the drive# for both files. This is also necessary if both files are stored on
drive#1.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: CONCAT is executed in the DOS of the disk drive. Both files must ex-
ist and no pattern matching is allowed. Only files of type SEQ may be
concatenated.

Examples: Using CONCAT

CONCAT "NEW DATA" TO "ARCHIVE" ,U9

CONCAT "ADDRESS",D0 TO "ADDRESS BOOK",D1

58

CONT
Token: $9A

Format: CONT

Usage: Resumes program execution after a break or stop caused by an END or

STOP statement, or by pressing RUN
STOP .

This is a useful debugging tool. The BASIC program may be stopped and
variables can be examined, and even changed. The CONT statement
resumes execution.

Remarks: CONT cannot be used if a program has stopped because of an error.
Also, any editing of a program inhibits continuation. Stopping and con-
tinuation can spoil the screen output, and can also interfere with in-
put/output operations.

Example: Using CONT

10 I=I+1:GOTO 10

RUN

BREAK IN 10

READY.

PRINT I

947

CONT

59

COPY
Token: $F4

Format: COPY source [,D drive] [,U unit] TO [target] [,D drive] [,U unit]

Usage: Copies a file to another file, or one or more files from one disk to another.

source is either a quoted string, e.g. "DATA" or a string expression in brack-
ets, e.g. (FI$).

target is either a quoted string, e.g. "BACKUP" or a string expression in brack-
ets, e.g. (FS$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

If none or one unit number is given, or the unit numbers before and after
the TO token are equal, COPY is executed on the disk drive itself, and
the source and target files will be on the same disk.

If the source unit (before TO) is different to the target unit (after TO),
COPY executes a CPU-driven routine that reads the source files into a
RAM buffer and writes to the target unit. In this case, the target file name
cannot be chosen, it will be the same as the source filename. The ex-
tended unit-to-unit copy mode allows the copying of single files, pattern
matching files or all files of a disk. Any combination of units is allowed,
internal floppy, D81 disk images, IEC floppy drives such as the 1541,
1571, 1581, or CMD floppy and hard drives.

Remarks: The file types PRG, SEQ and USR can be copied. If source and target
are on the same disk, the target filename must be different to the source
file name.

COPY cannot copy DEL files, which are commonly used as titles or sep-
arators in disk directories. These do not conform to Commodore DOS
rules and cannot be accessed by standard OPEN routines.

REL files cannot be copied from unit to unit.

Examples: Using COPY

60

COPY U8 TO U9 :REM COPY ALL FILES

COPY "CODES" TO "BACKUP" :REM COPY SINGLE FILE

COPY "*.TXT",U8 TO U9 :REM PATTERN COPY

COPY "M*",U9 TO U11 :REM PATTERN COPY

61

COS
Token: $BE

Format: COS(numeric expression)

Returns: The cosine of an angle.

The argument is expected in units of radians. The result is in the range
(-1.0 to +1.0)

Remarks: A value in units of degrees can be converted to radians by multiplying
it with π/180.

Examples: Using COS

PRINT COS(0.7)

0.76484219

X=60:PRINT COS(X * ~ / 180)

0.5

62

CURSOR
Format: CURSOR <ON | OFF> [{, column, row, style}]

CURSOR column, row

Usage: Moves the text cursor to the specified position on the current text screen.

ON or OFF displays or hides the cursor. When the cursor is ON, it will
appear at the cursor position during GETKEY.

column and row specify the new position.

style sets a solid (1) or flashing (0) cursor.

Example: Using CURSOR

10 SCNCLR

20 CURSOR 1,2

30 PRINT "A"; : SLEEP 1

40 PRINT "B"; : SLEEP 1

50 PRINT "C"; : SLEEP 1

60 CURSOR 20,10

70 PRINT "D"; : SLEEP 1

80 CURSOR ,5 :REM MOVE THE CURSOR TO ROW 5 BUT DO NOT CHANGE THE COLUMN

90 PRINT "E"; : SLEEP 1

100 CURSOR 0 :REM MOVE THE CURSOR TO THE START OF THE ROW

110 PRINT "F"; : SLEEP 1

63

CUT
Token: $E4

Format: CUT x, y, width, height

Usage: Bitmap graphics: copies the content of the specified rectangle with up-
per left position x, y and the width and height to a buffer, and fills the
region afterwards with the colour of the currently selected pen.

The cut out can be inserted at any position with the command PASTE.

Remarks: The size of the rectangle is limited by the 1K size of the buffer. The
memory requirement for a cut out region is width * height * number of
bitplanes / 8. It must not equal or exceed 1024 byte. For a 4-bitplane
screen for example, a 45 x 45 region needs 1012.5 byte.

Example: Using CUT

10 SCREEN 320,200,2

20 BOX 60,60,300,180,1 :REM DRAW A WHITE BOX

30 PEN 2 :REM SELECT RED PEN

40 CUT 140,80,40,40 :REM CUT OUT A 40 * 40 REGION

50 PASTE 10,10,40,40 :REM PASTE IT TO NEW POSITION

60 GETKEY A$:REM WAIT FOR KEYPRESS

70 SCREEN CLOSE

64

DATA
Token: $83

Format: DATA [constant [, constant ...]]

Usage: Defines constants which can be read by READ statements in a program.

Numbers and strings are allowed, but expressions are not. Items are sep-
arated by commas. Strings containing commas, colons or spaces must
be placed in quotes.

RUN initialises the data pointer to the first item of the first DATA state-
ment and advances it for every read item. It is the programmer’s re-
sponsibility that the type of the constant and the variable in the READ
statement match. Empty items with no constant between commas are
allowed and will be interpreted as zero for numeric variables and an
empty string for string variables.

RESTORE may be used to set the data pointer to a specific line for sub-
sequent reads.

Remarks: It is good programming practice to put large amounts of DATA state-
ments at the end of the program, so they don’t slow down the search for
line numbers afterGOTO, and other statements with line number targets.

Example: Using DATA

1 REM DATA

10 READ NA$, VE

20 READ N% : FOR I=2 TO N% : READ GL(I) : NEXT I

30 PRINT "PROGRAM:";NA$;" VERSION:";VE

40 PRINT "N-POINT GAUSSLEGENDRE FACTORS E1":

50 FOR I=2 TO N%:PRINT I;GL(I):NEXT I

60 END

80 DATA "MEGA65",1.1

90 DATA 5,0.5120,0.3573,0.2760,0.2252

RUN

PROGRAM:MEGA65 VERSION: 1.1

N-POINT GAUSSLEGENDRE FACTORS E1

2 0.512

3 0.3573

4 0.276

5 0.2252

65

DCLEAR
Token: $FE $15

Format: DCLEAR [,D drive] [,U unit]

Usage: Sends an initialise command to the specified unit and drive.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

The DOS of the disk drive will close all open files, clear all channels, free
buffers and re-read the BAM. All open channels on the computer will also
be closed.

Examples: Using DCLEAR

DCLEAR

DCLEAR U9

DCLEAR D0, U9

66

DCLOSE
Token: $FE $0F

Format: DCLOSE [U unit]
DCLOSE # channel

Usage: Closes a single file or all files for the specified unit.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

DCLOSE is used either with a channel argument or a unit number, but
never both.

Remarks: It is important to close all open files before a program ends. Otherwise
buffers will not be freed and even worse, open files that have been writ-
ten to may be incomplete (commonly called splat files), and no longer
usable.

Examples: Using DCLOSE

DCLOSE#2 :REM CLOSE FILE ASSIGNED TO CHANNEL 2

DCLOSE U9:REM CLOSE ALL FILES OPEN ON UNIT 9

67

DEC
Token: $D1

Format: DEC(string expression)

Returns: The decimal value of a hexadecimal string.

The argument range is “0” to “FFFFFFFF”. DEC() ignores everything after
the first non-hex digit or the eighth character.

Remarks: Allowed digits in uppercase/graphics mode are 0 – 9 and A – F
(0123456789ABCDEF) and in lowercase/uppercase mode are 0 – 9 and a – f
(0123456789abcdef).

Example: Using DEC

PRINT DEC("D000")

53248

POKE DEC("600"),255

68

DECBIN
Token: $CE $11

Format: DECBIN(string expression)

Returns: The decimal value of a binary string.

The argument range is “0” to “11111111111111111111111111111111”.
DECBIN() ignores everything after the first non-binary digit or the 32nd
character.

Example: Using DECBIN

PRINT DECBIN("1101000000000000")

53248

69

DEF FN
Token: $96

Format: DEF FN name(real variable) = [expression]

Usage: Defines a single statement user function with one argument of type real,
that returns a real value when evaluated.

The definition must be executed before the function can be used in ex-
pressions. The argument is a dummy variable, which will be replaced by
the argument when the function is used.

Remarks: The function argument is not a real variable and will not overwrite a vari-
able with that name. It only represents the argument value within the
function definition.

Example: Using DEF FN

10 PD = ~ / 180

20 DEF FN CD(X)= COS(X*PD): REM COS FOR DEGREES

30 DEF FN SD(X)= SIN(X*PD): REM SIN FOR DEGREES

40 FOR D=0 TO 360 STEP 90

50 PRINT USING "###";D

60 PRINT USING " ##.##";FNCD(D);

70 PRINT USING " ##.##";FNSD(D)

80 NEXT D

RUN

0 1.00 0.00

90 0.00 1.00

180 -1.00 0.00

270 0.00 -1.00

360 1.00 0.00

70

DELETE
Token: $F7

Format: DELETE [line range]
DELETE filename [,D drive] [,U unit] [,R]

Usage: The first form deletes a range of lines from the BASIC program. The
second form deletes one or more files from a disk.

line range consists of the first and last line to delete, or a single line
number. If the first number is omitted, the first BASIC line is assumed.
The second number in the range specifier defaults to the last BASIC line.

filename is either a quoted string, for example: "SAFE"" or a string expres-
sion in brackets, for example: (FS$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

R Recover a previously deleted file. This will only work if there were no
write operations between deletion and recovery, which may have altered
the contents of the file.

Remarks: DELETE filename is a synonym of SCRATCH filename and ERASE file-
name.

Examples: Using DELETE

DELETE 100 :REM DELETE LINE 100

DELETE 240-350 :REM DELETE ALL LINES FROM 240 TO 350

DELETE 500- :REM DELETE FROM 500 TO END

DELETE -70 :REM DELETE FROM START TO 70

DELETE "DRM",U9 :REM DELETE FILE DRM ON UNIT 9

DELETE "*=SEQ" :REM DELETE ALL SEQUENTIAL FILES

DELETE "R*=PRG" :REM DELETE PROGRAM FILES STARTING WITH 'R'

71

DIM
Token: $86

Format: DIM name(limits) [, name(limits) ...]

Usage: Declares the shape, bounds and the type of a BASIC array.

As a declaration statement, it must be executed only once and before
any usage of the declared arrays. An array can have one or more dimen-
sions. One dimensional arrays are often called vectors while two or more
dimensions define a matrix. The lower bound of a dimension is always
zero, while the upper bound is as declared. The rules for variable names
apply for array names as well. You can create byte arrays, integer ar-
rays, real arrays and string arrays. It is legal to use the same identifier for
scalar variables and array variables. The left parenthesis after the name
identifies array names.

Remarks: Byte arrays consume one byte per element, integer arrays two bytes, real
arrays five bytes and string arrays three bytes for the string descriptor
plus the length of the string itself.
If an array identifier is used without being previously declared, an implicit
declaration of an one dimensional array with limit of 10 is performed.

Example: Using DIM

1 REM DIM

10 DIM A%(8) : REM ARRAY OF 9 ELEMEMTS

20 DIM XX(2,3) : REM ARRAY OF 3X4 = 12 ELEMENTS

30 FOR I=0 TO 8 : A%(I)=PEEK(256+I) : PRINT A%(I);: NEXT:PRINT

40 FOR I=0 TO 2 : FOR J=0 TO 3 : READ XX(I,J):PRINT XX(I,J);: NEXT J,I

50 END

60 DATA 1,-2,3,-4,5,-6,7,-8,9,-10,11,-12

RUN

45 52 50 0 0 0 0 0 0

1 -2 3 -4 5 -6 7 -8 9 -10 11 -12

72

DIR
Token: $EE (DIR) $FE $29 (ECTORY)

Format: DIR [filepattern] [,W] [,P] [,R] [,D drive] [,U unit]
DIRECTORY [filepattern] [,W] [,P] [,R] [,D drive] [,U unit]
$ [filepattern] [,W] [,R] [,D drive] [,U unit]
DIR U12 [,P]

Usage: Prints a file directory/catalog of the specified disk.

The W (Wide) parameter lists the directory three columns wide on the
screen and pauses after the screen has been filled with a page (63 di-
rectory entries). Pressing any key displays the next page.

The P (Pagination) parameter lists the directory one column wide, and
pauses for each screenful of output. Press the Q key to interrupt the
listing at the current page. Press any other key to display the next page.

The R (Recoverable) parameter includes files in the directory, which are
flagged as deleted but are still recoverable.

filepattern is either a quoted string, for example: "DA*" or a string expres-
sion in brackets, e.g. (DI$)

The U12 argument lists the contents of the SD card. It can be used
with the P argument for a paginated display. It does not support other
arguments.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: DIR is a synonym of CATALOG and DIRECTORY, and produces the same
listing. The filepattern can be used to filter the listing. The wildcard
characters * and ? may be used. Adding ,T= to the pattern string, with T
specifying a filetype of P, S, U or R (for PRG, SEQ, USR, REL) filters the
output to that filetype.

The shortcut symbol $ can only be used in direct mode.

Examples: Using DIR

73

DIR

0 "BLACK SMURF " BS 2A

508 "STORY PHOBOS" SEQ

27 "C8096" PRG

25 "C128" PRG

104 BLOCKS FREE.

For a DIR listing with the wide parameter, please refer to the example
under CATALOG on page 41.

74

DISK
Token: $FE $40

Format: DISK command [,U unit]
@ command [,U unit]

Usage: Sends a command string to the specified disk unit.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

command is a string expression.

Remarks: The command string is interpreted by the disk unit and must be compat-
ible to the used DOS version. Read the disk drive manual for possible
commands.

Using DISK with no parameters prints the disk status.

The shortcut key @ can only be used in direct mode.

Examples: Using DISK

DISK "I0" :REM INITIALISE DISK IN DRIVE 0

DISK "U0>9" :REM CHANGE UNIT# TO 9

75

DLOAD
Token: $F0

Format: DLOAD filename [,D drive] [,U unit]
DLOAD ”$[pattern=type]” [,D drive] [,U unit]
DLOAD ”$$[pattern=type]” [,D drive] [,U unit]

Usage: The first form loads a file of type PRG into memory reserved for BASIC
programs.

The second form loads a directory into memory, which can then be
viewed with LIST. It is structured like a BASIC program, but file sizes are
displayed instead of line numbers.

The third form is similar to the second one, but the files are numbered.
This listing can be scrolled like a BASIC program with the keys F9 or
F11 , edited, listed, saved or printed.

A filter can be applied by specifying a pattern or a pattern and a type.
The asterisk matches the rest of the name, while the ? matches any
single character. The type specifier can be a character of (P,S,U,R), that
is Program, Sequential, User, or Relative file.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: The load address that is stored in the first two bytes of the PRG file is
ignored. The program is always loaded into BASIC memory. This enables
loading of BASIC programs that were saved on other computers with
different memory configurations. After loading, the program is re-linked
and ready to be RUN or edited.

It is possible to use DLOAD in a running program. This is called overlaying,
or chaining. If you do this, then the newly loaded program replaces the
current one, and the execution starts automatically on the first line of
the new program. Variables, arrays and strings from the current run are
preserved and can also be used by the newly loaded program.

Every DLOAD, of either a program or a directory listing, will replace a
program that is currently in memory.

Examples: Using DLOAD

76

DLOAD "APOCALYPSE"

DLOAD "MEGA TOOLS",U9

DLOAD (FI$),U(UN%)

DLOAD "$" :REM LOAD WHOLE DIRECTORY - WITH FILE SIZES

DLOAD "$$" :REM LOAD WHOLE DIRECTORY - SCROLLABLE

DLOAD "$$X*=P" :REM DIRECTOY WITH PRG FILES STARTING with 'X'

77

DMA
Token: $FE $1F

Format: DMA command [, length, source address, source bank, target address,
target bank [, sub]]

Usage: DMA (”Direct Memory Access”) is obsolete, and has been replaced by
EDMA.

command The lower two bits control the function: 0: copy, 1: mix, 2:
swap, 3: fill. Note that only copy and fill are implemented in the MEGA65
DMAcontroller at the time of writing. Other DMAgic command bits can
also be set, for example, to allow copying data in the reverse direction,
or holding the source or destination address.

length number of bytes (in the range 0 to 65535). NOTE: Specifying
a length of 0 will be interpreted as a length of 65536 (exactly 64 kilo-
bytes).

source address 16-bit address of read area or fill byte

source bank bank number for source (ignored for fill mode)

target 16-bit address of write area

target bank bank number for target

sub sub command

Remarks: DMA has access to the lower 1MB address range organised in 16 banks
of 64 K. To avoid this limitation, use EDMA, which has access to the full
256MB address range.

Examples: A sequence of DMA calls to demonstrate fast screen drawing operations

DMA 0, 80*25, 2048, 0, 0, 4 :REM SAVE SCREEN TO $00000 BANK 4

DMA 3, 80*25, 32, 0, 2048, 0 :REM FILL SCREEN WITH BLANKS

DMA 0, 80*25, 0, 4, 2048, 0 :REM RESTORE SCREEN FROM $00000 BANK 4

DMA 2, 80, 2048, 0, 2048+80, 0 :REM SWAP CONTENTS OF LINE 1 & 2 OF SCREEN

78

DMODE
Token: $FE $35

Format: DMODE jam, complement, stencil, style, thick

Usage: Bitmap graphics: sets “display mode” parameters of the graphics con-
text, which is used by drawing commands.

Mode Values
jam 0 - 1
complement 0 - 1
stencil 0 - 1
style 0 - 3
thick 1 - 8

79

DO
Token: $EB

Format: DO ... LOOP
DO [<UNTIL | WHILE> logical expression]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> logical expression]

Usage: DO and LOOP define the start of a BASIC loop.

Using DO and LOOP alone without any modifiers creates an infinite loop,
which can only be exited by the EXIT statement. The loop can be con-
trolled by adding UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement only exits the current loop.

Examples: Using DO and LOOP

10 PW$="":DO

20 GET A$:PW$=PW$+A$

30 LOOP UNTIL LEN(PW$)>7 OR A$=CHR$(13)

10 DO : REM WAIT FOR USER DECISION

20 GET A$

30 LOOP UNTIL A$="Y" OR A$="N" OR A$="y" OR A$="n"

10 DO WHILE ABS(EPS) > 0.001

20 GOSUB 2000 : REM ITERATION SUBROUTINE

30 LOOP

10 I%=0 : REM INTEGER LOOP 1-100

20 DO: I%=I%+1

30 LOOP WHILE I% < 101

80

DOPEN
Token: $FE $0D

Format: DOPEN# channel, filename [,L [reclen]] [,W] [,D drive] [,U unit]

Usage: Opens a file for reading or writing.

channel number, where:

• 1 <= channel <= 127 line terminator is CR.

• 128 <= channel <= 255 line terminator is CR LF.

L indicates, that the file is a relative file, which is opened for read/write,
as well as random access.

The reclen record length is mandatory for creating relative files. For
existing relative files, reclen is used as a safety check, if given.

W opens a file for write access. The file must not exist.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: DOPEN# may be used to open all file types. The sequential file type SEQ
is default. The relative file type REL is chosen by using the L parameter.
Other file types must be specified in the filename, e.g. by adding ”,P” to
the filename for PRG files or ”,U” for USR files.

If the first character of the filename is an at sign ’@’, it is interpreted as a
”save and replace” operation. It is not recommended to use this option
on 1541 and 1571 drives, as they contain a ”save and replace bug” in
their DOS.

81

Examples: Using DOPEN

DOPEN#5,"DATA",U9

DOPEN#130,(DD$),U(UN%)

DOPEN#3,"USER FILE,U"

DOPEN#2,"DATA BASE",L240

DOPEN#4,"MYPROG,P" : REM OPEN PRG FILE

82

DOT
Token: $FE $4C

Format: DOT x, y [,colour]

Usage: Bitmap graphics: draws a pixel at screen coordinates x and y. The op-
tional third parameter defines the colour to be used. If not specified, the
current pen colour will be used.

Example: Using DOT:

10 SCREEN 320,200,5

20 BOX 50,50,270,150

30 VIEWPORT 50,50,220,100

40 FORI=0TO127

50 DOT I+I+I,I+I,I

60 NEXT

70 GETKEY A

80 SCREEN CLOSE

83

DPAT
Token: $FE $36

Format: DPAT type [, number, pattern ...]

Usage: Bitmap graphics: sets the drawing pattern of the graphics context for
drawing commands.

There a four predefined pattern types, that can be selected by specifying
the type number (1, 2, 3, or 4) as a single parameter.

A value of zero for the type number indicates a user defined pattern.
This pattern can be set by using a bit string that consists of either 8, 16,
24, or 32 bits. The number of used pattern bytes is given as the second
parameter. It defines how many pattern bytes (1, 2, 3, or 4) follow.

• Type 0 – 4

• Number number of following pattern bytes (1 – 4)

• Pattern pattern bytes

84

DS
Format: DS

Usage: The status of the last disk operation.

This is a volatile variable. Each use triggers the reading of the disk status
from the current disk device in usage.

DS is coupled to the string variable DS$ which is updated at the same
time.

Reading the disk status from a disk device automatically clears any error
status on that device, so subsequent reads will return 0, if no other activity
has since occurred.

Remarks: DS is a reserved system variable.

Example: Using DS

100 DOPEN#1,"DATA"

110 IF DS<>0 THEN PRINT"COULD NOT OPEN FILE DATA":STOP

85

DS$
Format: DS$

Usage: The status of the last disk operation in text form of the format:
Code,Message,Track,Sector.

DS$ is coupled to the numeric variable DS. It is updated when DS is used.
DS$ is set to 00,OK,00,00 if there was no error, otherwise it is set to a DOS
error message (listed in the disk drive manuals).

Remarks: DS$ is a reserved system variable.

Example: Using DS$

100 DOPEN#1,"DATA"

110 IF DS<>0 THEN PRINT DS$:STOP

86

DSAVE
Token: $EF

Format: DSAVE filename [,D drive] [,U unit]

Usage: Saves the BASIC program in memory to a file of type PRG.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$). The maximum length of the
filename is 16 characters. If the first character of the filename is an at
sign ’@’ it is interpreted as a ”save and replace” operation. It is not rec-
ommended to use this option on 1541 and 1571 drives, as they contain
a ”save and replace bug” in their DOS.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: DVERIFY can be used after DSAVE to check if the saved program on disk
is identical to the program in memory.

Example: Using DSAVE

DSAVE "ADVENTURE"

DSAVE "ZORK-I",U9

DSAVE "DUNGEON",D1,U10

87

DT$
Format: DT$

Usage: The current date, as a string.

The date value is updated from RTC (Real-Time Clock). The string DT$ is
formatted as: ”DD-MON-YYYY”, for example: ”04-APR-2021”.

Remarks: DT$ is a reserved system variable. For more information on how to set
the Real-Time Clock, refer to the MEGA65 Book, The Configuration Utility
(section 4).

Example: Using DT$

100 PRINT "TODAY IS: ";DT$

88

DVERIFY
Token: $FE $14

Format: DVERIFY filename [,D drive] [,U unit]

Usage: Verifies that the BASIC program in memory is equivalent to a file of type
PRG.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: DVERIFY can only test for equality. It gives no information about the
number or position of different valued bytes. DVERIFY exits either with
the message OK or with VERIFY ERROR.

Example: Using DVERIFY

DVERIFY "ADVENTURE"

DVERIFY "ZORK-I",U9

DVERIFY "DUNGEON",D1,U10

89

EDIT
Format: EDIT <ON | OFF>

Usage: Enables or disables the text editing mode of the screen editor.

EDIT ON enables text editing mode. In this mode, you can create, edit,
save, and load files of type SEQ as text files using the same line editor
that you use to write BASIC programs. In this mode:

• The prompt appears as OK, instead of READY.

• The editor does no tokenising/parsing. All text entered after a
linenumber remains pure text, BASIC keywords such as FOR and
GOTO are not converted to BASIC tokens, as they are whilst in pro-
gram mode.

• The line numbers are only used for text organisation, sorting, delet-
ing, listing, etc.

• When the text is saved to file with DSAVE, a sequential file (type
SEQ) is written, not a program (PRG) file. Line numbers are not
written to the file.

• DLOAD in text mode can load only sequential files. Line numbers
are automatically generated for editing purposes.

• Text mode applies to lines entered with line numbers only. Lines with
no line number are executed as BASIC commands, as usual.

EDIT OFF disables text editing mode and returns to BASIC program edit-
ing mode. The MEGA65 starts in BASIC program editing mode.

Sequential files created with the text editor can be displayed (without
loading them) on the screen by using TYPE <filename>.

90

Example: Using EDIT

ready.

edit on

ok.

100 This is a simple text editor.

dsave "example"

ok.

new

ok.

catalog

0 "demoempty " 00 3d

1 "example" seq

3159 blocks free

ok.

type "example"

This is a simple text editor.

ok.

dload "example"

loading

ok.

list

1000 This is a simple text editor.

ok.

91

EDMA
Token: $FE $21

Format: EDMA command, length, source, target

Usage: Copies or updates a large amount of memory quickly.

EDMA (”Extended Direct Memory Access”) is the fastest method to ma-
nipulate memory areas using the DMA controller. Please refer to the
MEGA65 Book, F018-Compatible Direct Memory Access (DMA) Con-
troller (Appendix O) for more details on EDMA.

command 0: copy, 1: mix, 2: swap, 3: fill.

Because this two bits of the command share the same register with other
bits you can for example use bit 5 to reverse loop operation. This is also
working in overlapping memory regions for source and target. Please see
the example below.

length number of bytes (in the range 0 to 65535). NOTE: Specifying
a length of 0 will be interpreted as a length of 65536 (exactly 64 kilo-
bytes).

source 28-bit address of read area or fill byte.

target 28-bit address of write area.

Remarks: EDMA can access the entire 256MB address range, using up to 28 bits
for the addresses of the source and target.

Examples: Using EDMA

EDMA 0, $800, $F700, $8000000 :REM COPY SCALAR VARIABLES TO ATTIC RAM

EDMA 3, 80*25, 32, 2048 :REM FILL SCREEN WITH BLANKS

EDMA 0, 80*25, 2048, $8000800 :REM COPY SCREEN TO ATTIC RAM

By adding 32 (bit 5) to the command parameter, the DMA operation can
be performed in reverse order:

10 PRINT "ƳMEGA65!"

20 EDMA 0,10,2048,3020 : REM 2048 IS BEGINNING OF SCREEN RAM

30 EDMA 32,10,2048,3100 : REM 3020 AND 3100 ARE THE LOWER PART OF THE SCREEN

92

Listing and output of the last example:

93

EL
Format: EL

Usage: The line number where the most recent BASIC error occurred, or the value
-1 if there was no error.

Remarks: EL is a reserved system variable.

This variable is typically used in a TRAP routine, where the error line is
taken from EL.

Example: Using EL

10 TRAP 100

20 PRINT SQR(-1) :REM PROVOKE ERROR

30 PRINT "AT LINE 30":REM HERE TO RESUME

40 END

100 IF ER>0 THEN PRINT ERR$(ER);" ERROR"

110 PRINT " IN LINE";EL

120 RESUME NEXT :REM RESUME AFTER ERROR

94

ELLIPSE
Token: $FE $30

Format: ELLIPSE xc, yc, xr, yr [, flags , start, stop]

Usage: Bitmap graphics: draws an ellipse.

xc is the x coordinate of the centre in pixels

yc is the y coordinate of the centre in pixels

xr is the x radius of the ellipse in pixels

yr is the y radius of the ellipse in pixels

flags control filling, arcs and orientation of the zero radian (combs flag
named after retroCombs). Default setting (zero) is: Don’t fill, draw legs,
start drawing at 3 ’o clock.

Bit Name Value Action if set
0 fill 1 Fill ellipse or arc with the current pen colour
1 legs 2 Suppress drawing of the legs of an arc
2 combs 4 Drawing (0 degree) starts at 12 ’o clock

The units for the start- and stop-angle are degrees in the range of 0 to
360. The 0 radian starts at 3 o’ clock and moves clockwise. The combs-
flag shifts the 0 radian and the start position to the 12 ’o clock position.

start start angle for drawing an elliptic arc.

stop stop angle for drawing an elliptic arc.

Remarks: ELLIPSE is used to draw ellipses on screens at various resolutions. If a
full ellipse is to be drawn, start and stop should be either omissed or set
both to zero (not 0 and 360). Drawing and filling of full ellipses is much
faster, than using elliptic arcs.

Example: Using ELLIPSE

95

100 S%=2:D%=3:W%=320*S%:H%=200*S% :REM SCREEN SETTINGS

110 CX%=W%/2:CY%=H%/2 :REM CENTRE AND RADII

120 RX%=W%/2:RY%=H%/2

130 SCREEN W%,H%,D% :REM OPEN SCREEN

140 ELLIPSE CX%,CY%,CX%-4,CY%-4

150 PEN2:CIRCLE CX%,CY%,RY%-4,2

160 PEN3:CIRCLE CX%,CY%,RY%-14,2

170 PEN4:CIRCLE CX%,CY%,RY%-24,0,135,45

180 PEN5:ELLIPSE CX%,CY%/2,RX%/4,RY%/4,1

190 PEN6:CIRCLE 120*S%,CY%,40,1,45,315

200 PEN7:CIRCLE 200*S%,CY%,40,1,225,135

210 PEN0:CHAR 34,CY%/2-8,2,2,2,"MEGA65",$3D000

220 GETKEY A& :REM WAIT FOR ANY KEY

230 SCREEN CLOSE :REM CLOSE GRAPHICS SCREEN

96

ELSE
Token: $D5

Format: IF expression THEN true clause [:ELSE false clause]

Usage: ELSE is an optional part of an IF statement.

expression a logical or numeric expression. A numeric expression is
evaluated as FALSE if the value is zero and TRUE for any non-zero value.

true clause one or more statements starting directly after THEN on the
same line. A line number after THEN performs a GOTO to that line in-
stead.

false clause one or more statements starting directly after ELSE on the
same line. A linenumber after ELSE performs aGOTO to that line instead.

Remarks: There must be a colon before ELSE. There cannot be a colon or end-of-
line after ELSE.

The standard IF ... THEN ... ELSE structure is restricted to a single line.
But the true clause and false clause may be expanded to several lines
using a compound statement surrounded with BEGIN and BEND.

When the true clause does not use BEGIN and BEND, ELSE must be on
the same line as IF.

Example: Using ELSE

100 REM ELSE

110 RED$=CHR$(28):BLACK$=CHR$(144):WHITE$=CHR$(5)

120 INPUT "ENTER A NUMBER";V

130 IF V<0 THENPRINT RED$;:ELSEPRINT BLACK$;

140 PRINT V : REM PRINT NEGATIVE NUMBERS IN RED

150 PRINT WHITE$

160 INPUT "END PROGRAM:(Y/N)";A$

170 IF A$="Y" THENEND

180 IF A$="N" THEN120:ELSE160

Using ELSE with BEGIN and BEND.

97

100 A = 0 : GOSUB 200

110 A = 1 : GOSUB 200

120 END

200 IF A = 0 THEN BEGIN

210 PRINT "HELLO"

220 BEND : ELSE BEGIN

230 PRINT "GOODBYE"

240 BEND

250 RETURN

98

END
Token: $80

Format: END

Usage: Ends the execution of the BASIC program.

The READY. prompt appears and the computer goes into direct mode wait-
ing for keyboard input.

Remarks: END does not clear channels nor close files. Variable definitions are still
valid after END. The program may be continued with the CONT state-
ment. After executing the last line of a program, END is executed auto-
matically.

Example: Using END

10 IF V < 0 THEN END : REM NEGATIVE NUMBERS END THE PROGRAM

20 PRINT V

99

ENVELOPE
Token: $FE $0A

Format: ENVELOPE n [{, attack, decay, sustain, release, waveform, pw}]

Usage: Sets the parameters for the synthesis of a musical instrument for use with
PLAY.

n envelope slot (0 – 9).

attack attack rate (0 – 15).

decay decay rate (0 – 15).

sustain sustain rate (0 – 15).

release release rate (0 – 15).

waveform 0: triangle, 1: sawtooth, 2: square/pulse, 3: noise, 4: ring
modulation.

pw pulse width (0 – 4095) for waveform.

There are 10 slots for storing instrument parameters, preset with the fol-
lowing default values:

n A D S R WF PW Instrument
0 0 9 0 0 2 1536 Piano
1 12 0 12 0 1 Accordion
2 0 0 15 0 0 Calliope
3 0 5 5 0 3 Drum
4 9 4 4 0 0 Flute
5 0 9 2 1 1 Guitar
6 0 9 0 0 2 512 Harpsichord
7 0 9 9 0 2 2048 Organ
8 8 9 4 1 2 512 Trumpet
9 0 9 0 0 0 Xylophone

Example: Using ENVELOPE

10 ENVELOPE 9,10,5,10,5,2,4000

20 VOL 9,9

30 TEMPO 30

40 PLAY "T9O4Q CDEFGAB U3T8 CDEFGAB L","T5O3Q H CGEQG T7 HCGEQG L"

100

ER
Format: ER

Usage: The number of the most recent BASIC error that has occurred, or -1 if
there was no error.

Remarks: ER is a reserved system variable.

This variable is typically used in a TRAP routine, where the error number
is taken from ER.

Example: Using ER

10 TRAP 100

20 PRINT SQR(-1) :REM PROVOKE ERROR

30 PRINT "AT LINE 30":REM HERE TO RESUME

40 END

100 IF ER>0 THEN PRINT ERR$(ER);" ERROR"

110 PRINT " IN LINE";EL

120 RESUME NEXT :REM RESUME AFTER ERROR

101

ERASE
Token: $FE $2A

Format: ERASE filename [,D drive] [,U unit] [,R]

Usage: Erases (deletes) a disk file.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

R Recover a previously erased file. This will only work if there were no
write operations between erasing and recovery, which may have altered
the contents of the disk.

Remarks: ERASE filename is a synonym of SCRATCH filename and DELETE file-
name.

In direct mode, the success and the number of erased files is printed.
The second to last number from the message contains the number of
successfully erased files.

Examples: Using ERASE

ERASE "DRM",U9 :REM ERASE FILE DRM ON UNIT 9

01, FILES SCRATCHED,01,00

ERASE "OLD*" :REM ERASE ALL FILES BEGINNING WITH "OLD"

01, FILES SCRATCHED,04,00

ERASE "R*=PRG" :REM ERASE PROGRAM FILES STARTING WITH 'R'

01, FILES SCRATCHED,09,00

102

ERR$
Token: $D3

Format: ERR$(number)

Returns: The string description of a given BASIC error number.

number a BASIC error number (1 – 41)

This function is typically used in a TRAP routine, where the error number
is taken from the reserved variable ER.

Remarks: Arguments out of range (1 – 41) will produce an ILLEGAL QUANTITY error.

Example: Using ERR$

10 TRAP 100

20 PRINT SQR(-1) :REM PROVOKE ERROR

30 PRINT "AT LINE 30":REM HERE TO RESUME

40 END

100 IF ER>0 THEN PRINT ERR$(ER);" ERROR"

110 PRINT " IN LINE";EL

120 RESUME NEXT :REM RESUME AFTER ERROR

103

EXIT
Token: $FD

Format: EXIT

Usage: Exits the current DO .. LOOP and continues execution at the first state-
ment after LOOP.

Remarks: In nested loops, EXIT exits only the current loop, and continues execution
in an outer loop (if there is one).

Example: Using EXIT

1 REM EXIT

10 OPEN 2,8,0,"$" : REM OPEN CATALOG

15 IF DS THEN PRINT DS$: STOP: REM CANT READ

20 GET#2,D$,D$: REM DISCARD LOAD ADDRESS

25 DO : REM LINE LOOP

30 GET#2,D$,D$: REM DISCARD LINE LINK

35 IF ST THEN EXIT : REM END-OF-FILE

40 GET#2,LO,HI : REM FILE SIZE BYTES

45 S=LO + 256 * HI : REM FILE SIZE

50 LINE INPUT#2, F$: REM FILE NAME

55 PRINT S;F$: REM PRINT FILE ENTRY

60 LOOP

65 CLOSE 2

104

EXP
Token: $BD

Format: EXP(numeric expression)

Returns: The value of the mathematical constant Euler’s number (2.71828183)
raised to the power of the argument.

Remarks: An argument greater than 88 produces an OVERFLOW ERROR.

Examples: Using EXP

PRINT EXP(1)

2.71828183

PRINT EXP(0)

1

PRINT EXP(LOG(2))

2

105

FAST
Token: $FE $25

Format: FAST [speed]

Usage: Sets CPU clock speed to 1MHz, 3.5MHz or 40MHz.

speed CPU clock speed where:

• 1 sets CPU to 1MHz.

• 3 sets CPU to 3MHz.

• Anything other than 1 or 3 sets the CPU to 40MHz.

Remarks: Although it’s possible to call FAST with any real number, the precision
part (the decimal point and any digits after it), will be ignored.

FAST is a synonym of SPEED.

FAST has no effect if POKE 0,65 has previously been used to set the CPU to
40MHz.

Example: Using FAST

10 FAST :REM SET SPEED TO MAXIMUM (40 MHZ)

20 FAST 1 :REM SET SPEED TO 1 MHZ

30 FAST 3 :REM SET SPEED TO 3.5 MHZ

40 FAST 3.5 :REM SET SPEED TO 3.5 MHZ

106

FGOSUB
Token: $FE $48

Format: FGOSUB numeric expression

Usage: Evaluates the given numeric expression, then calls (GOSUBs) the subrou-
tine at the resulting line number.

Warning: Take care when using RENUMBER to change the line numbers of your
program that any FGOSUB statements still use the intended numbers.

Example: Using FGOSUB:

10 INPUT "WHICH SUBROUTINE TO EXECUTE 100,200,300";LI

20 FGOSUB LI :REM HOPEFULLY THIS LINE # EXISTS

30 GOTO 10 :REM REPEAT

100 PRINT "AT LINE 100":RETURN

200 PRINT "AT LINE 200":RETURN

300 PRINT "AT LINE 300":RETURN

107

FGOTO
Token: $FE $47

Format: FGOTO numeric expression

Usage: Evaluates the given numeric expression, then jumps (GOesTO) to the re-
sulting line number.

Warning: Take care when using RENUMBER to change the line numbers of your
program that any FGOTO statements still use the intended numbers.

Example: Using FGOTO:

10 INPUT "WHICH LINE # TO EXECUTE 100,200,300";LI

20 FGOTO LI :REM HOPEFULLY THIS LINE # EXISTS

30 END

100 PRINT "AT LINE 100":END

200 PRINT "AT LINE 200":END

300 PRINT "AT LINE 300":END

108

FILTER
Token: $FE $03

Format: FILTER sid [{, freq, lp, bp, hp, res}]

Usage: Sets the parameters for a SID sound filter.

sid 1: right SID, 2: left SID

freq filter cut off frequency (0 - 2047)

lp low pass filter (0: off, 1: on)

bp band pass filter (0: off, 1: on)

hp high pass filter (0: off, 1: on)

resonance resonance (0 - 15)

Remarks: Missing parameters keep their current value. The effective filter is the
sum of of all filter settings. This enables band reject and notch effects.

Example: Using FILTER

10 PLAY "T7X1O3P9C"

15 SLEEP 0.02

20 PRINT "LOW PASS SWEEP" :L=1:B=0:H=0:GOSUB 100

30 PRINT "BAND PASS SWEEP":L=0:B=1:H=0:GOSUB 100

40 PRINT "HIGH PASS SWEEP":L=0:B=0:H=1:GOSUB 100

50 GOTO 20

100 REM *** SWEEP ***

110 FOR F = 50 TO 1950 STEP 50

120 IF F >= 1000 THEN FF = 2000-F : ELSE FF = F

130 FILTER 1,FF,L,B,H,15

140 PLAY "X1"

150 SLEEP 0.02

160 NEXT F

170 RETURN

109

FIND
Token: $FE $2B

Format: FIND /string/ [, line range]
FIND ”string” [, line range]

Usage: Searches the BASIC program that is currently in memory for all instances
of a string.

It searches a given line range (if specified), otherwise the entire BASIC
program is searched.

At each occurrence of the ”find string” the line is listed with the string
highlighted.

NO
SCROLL can be used to pause the output.

Remarks: Almost any character that is not part of the string, including letters and
punctuation, can be used instead of the slash /.

Using double quotes ” as a delimiter has a special effect: The search
text is not tokenised. FIND ”FOR” will search for the three letters F, O,
and R, not the BASIC keyword FOR. Therefore, it can find the word FOR
in string constants or REM statements, but not in program code.

On the other hand, FIND /FOR/ will find all occurrences of the BASIC
keyword, but not the text ”FOR” in strings.

Partial keywords cannot be searched. For example, FIND /LOO/ will not
find the keyword LOOP.

Due to how BASIC is parsed, finding the REM andDATA keywords requires
using the colon as the delimiter: FIND :REM TODO: This does not work
with the CHANGE command.

FIND is an editor command that can only be used in direct mode.

Example: Using FIND

110

111

FN
Token: $A5

Format: FN name(numeric expression)

Usage: FN functions are user-defined functions, that accept a numeric expres-
sion as an argument and return a real value. They must first be defined
with DEF FN before being used.

Example: Using FN

10 PD = ~ / 180

20 DEF FN CD(X)= COS(X*PD): REM COS FOR DEGREES

30 DEF FN SD(X)= SIN(X*PD): REM SIN FOR DEGREES

40 FOR D=0 TO 360 STEP 90

50 PRINT USING "###";D

60 PRINT USING " ##.##";FNCD(D);

70 PRINT USING " ##.##";FNSD(D)

80 NEXT D

RUN

0 1.00 0.00

90 0.00 1.00

180 -1.00 0.00

270 0.00 -1.00

360 1.00 0.00

112

FONT
Token: $FE $46

Format: FONT <A | B | C>

Usage: Updates all characters to the given built-in font.

FONT A is the PETSCII font with several lowercase characters replaced
with ASCII punctuation.

FONT B is an alternate appearance of FONT A.

FONT C is the PETSCII font. This is the default when the MEGA65 is first
switched on.

This resets any changes made by the CHARDEF command.

The ASCII symbols of fonts A and B are typed by pressing the keys in
the table below, some of which also require the holding down of the
` key. The codes for uppercase and lowercase are swapped com-
pared to ASCII.

Code Key PETSCII ASCII
$5C Pound \ \ (backslash)
$5E Up Arrow (next to RESTORE) ^ ^ (caret)
$5F Left Arrow (next to 1) _ _ (underscore)
$7B MEGA + Colon ě { (open brace)
$7C MEGA + Dot Ĝ | (pipe)
$7D MEGA + Semicolon ĝ } (close brace)
$7E MEGA + Comma ~ ~ (tilde)

Remarks: The additional ASCII characters provided by FONT A and B are only avail-
able while using the lowercase character set.

Examples: Using FONT

FONT A :REM ASCII - ENABLE {|}_~^
FONT B :REM LIKE A, WITH A SERIF FONT
FONT C :REM COMMODORE FONT (DEFAULT)

113

FOR
Token: $81

Format: FOR index = start TO end [STEP step] ... NEXT [index]

Usage: FOR statements start a BASIC loop with an index variable.

index may be incremented or decremented by a constant value on each
iteration. The default is to increment the variable by 1. The index variable
must be a real variable.

start is used to initialise the index.

end is checked at the end of an iteration, and determines whether an-
other iteration will be performed, or if the loop will exit.

step defines the change applied to to the index variable at the end of an
iteration. Positive step values increment it, while negative values decre-
ment it. It defaults to 1.0 if not specified.

Remarks: For positive increments end must be greater than or equal to start,
whereas for negative increments endmust be less than or equal to start.

It is bad programming practice to change the value of the index variable
inside the loop or to jump into or out of a loop body with GOTO.

Examples: Using FOR

10 FOR D=0 TO 360 STEP 30

20 R = D * ~ / 180

30 PRINT D;R;SIN(R);COS(R);TAN(R)

40 NEXT D

10 DIM M(20,20)

20 FOR I=0 TO 20

30 FOR J=I TO 20

40 M(I,J) = I + 100 * J

50 NEXT J,I

114

FOREGROUND
Token: $FE $39

Format: FOREGROUND colour

Usage: Sets the foreground text colour for subsequent PRINT commands.

colour the palette entry number, in the range 0 – 31

See appendix 6 on page 297 for the list of colours in the default system
palette.

Remarks: This is another name for COLOR.

Example: Using FOREGROUND

115

FORMAT
Token: $FE $37

Format: FORMAT diskname [,I id] [,D drive] [,U unit]

Usage: Formats a disk. This erases all data on the disk.

I The disk ID.

diskname is either a quoted string, e.g. "DATA" or a string expression in
brackets, e.g. (DN$). The maximum length of diskname is 16 characters.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: FORMAT is another name for the HEADER command.

For new floppy disks which have not already been formatted in MEGA65
(1581) format, it is necessary to specify the disk ID with the I parame-
ter. This switches the format command to low level format, which writes
sector IDs and erases all contents. This takes some time, as every block
on the floppy disk will be written.

If the I parameter is omitted, a quick format will be performed. This is
only possible if the disk has already been formatted as a MEGA65 or
1581 floppy disk. A quick format writes the new disk name and clears
the block allocation map, marking all blocks as free. The disk ID is not
changed, and blocks are not overwritten, so contents may be recovered
with ERASE R. You can read more about ERASE on page 102.

Examples: Using FORMAT

FORMAT "ADVENTURE",IDK : FORMAT DISK WITH NAME ADVENTURE AND ID DK

FORMAT "ZORK-I",U9 : FORMAT DISK IN UNIT 9 WITH NAME ZORK-I

FORMAT "DUNGEON",D1,U10: FORMAT DISK IN DRIVE 1 UNIT 10 WITH NAME DUNGEON

116

FRE
Token: $B8

Format: FRE(bank)

Returns: The number of free bytes for banks 0 or 1, or the ROM version if the
argument is negative.

FRE(0) returns the number of free bytes in bank 0, which is used for BASIC
program source.

FRE(1) returns the number of free bytes in bank 1, which is the bank for
BASIC variables, arrays and strings. FRE(1) also triggers “garbage col-
lection”, which is a process that collects strings in use at the top of the
bank, thereby defragmenting string memory.

FRE(-1) returns the ROM version, a six-digit number of the form 92XXXX.

Example: Using FRE:

10 PM = FRE(0)

20 VM = FRE(1)

30 RV = FRE(-1)

40 PRINT PM;" FREE FOR PROGRAM"

50 PRINT VM;" FREE FOR VARIABLES"

60 PRINT RV;" ROM VERSION"

117

FREAD
Token: $FE $1C

Format: FREAD# channel, pointer, size

Usage: Reads size bytes from channel to memory starting at the 32-bit address
pointer.

channel number, which was given to a previous call to commands such
as DOPEN, or OPEN

FREAD can be used to read data from disk directly into a variable. It is
recommended to use the POINTER statement for the pointer argument,
and to compute the size parameter by multiplying the number of ele-
ments with the item size.

Type Item Size
Byte Array 1
Integer Array 2
Real Array 5

Keep in mind that the POINTER function with a string argument does not
return the string address, but the string descriptor. It is not recommended
to use FREAD for strings or string arrays unless you are fully aware on how
to handle the string storage internals.

To read into an array, ensure that you always specify an array index so
that POINTER returns the address of an element. The start address of
array XY() is POINTER(XY(0)). POINTER(XY) returns the address of the scalar variable
XY.

Example: Using FREAD:

100 N=23

110 DIM B&(N),C&(N)

120 DOPEN#2,"TEXT"

130 FREAD#2,POINTER(B&(0)),N

140 DCLOSE#2

150 FORI=0TON-1:PRINTCHR$(B&(I));:NEXT

160 FORI=0TON-1:C&(I)=B&(N-1-I):NEXT

170 DOPEN#2,"REVERS",W

180 FWRITE#2,POINTER(C&(0)),N

190 DCLOSE#2

118

FREEZER
Token: $FE $4A

Format: FREEZER

Usage: Invokes the Freezer menu.

Remarks: Entering the FREEZER command is an alternative to holding and releasing

the RESTORE key.

Examples: Using FREEZER

FREEZER :REM CALL FREEZER MENU

119

FWRITE
Token: $FE $1E

Format: FWRITE# channel, pointer, size

Usage: Writes size bytes to channel from memory starting at the 32-bit address
pointer.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN.

FWRITE can be used to write the value of a variable to a file. It is rec-
ommended to use the POINTER statement for the pointer argument and
compute the size parameter by multiplying the number of elements with
the item size.

Refer to the FREAD item size table on page 118 for the item sizes.

Keep in mind that the POINTER function with a string argument does not
return the string address, but the string descriptor. It is not recommended
to use FWRITE for strings or string arrays unless you are fully aware on
how to handle the string storage internals.

To write an array, ensure that you always specify an array index so that
POINTER returns the address of an element. The start address of array
XY() is POINTER(XY(0)). POINTER(XY) returns the address of the scalar variable XY.

Example: Using FWRITE:

100 N=23

110 DIM B&(N),C&(N)

120 DOPEN#2,"TEXT"

130 FREAD#2,POINTER(B&(0)),N

140 DCLOSE#2

150 FORI=0TON-1:PRINTCHR$(B&(I));:NEXT

160 FORI=0TON-1:C&(I)=B&(N-1-I):NEXT

170 DOPEN#2,"REVERS",W

180 FWRITE#2,POINTER(C&(0)),N

190 DCLOSE#2

120

GCOPY
Token: $FE $32

Format: GCOPY x, y, width, height

Usage: Bitmap graphics: copies the content of the specified rectangle with up-
per left position x, y and the width and height to a buffer.

The copied region can be inserted at any position with the command
PASTE.

Remarks: The size of the rectangle is limited by the 1K size of the buffer. The
memory requirement for a region is width * height * number of bitplanes
/ 8. It must not equal or exceed 1024 byte. For a 4-bitplane screen for
example, a 45 x 45 region needs 1012.5 byte.

Example: Using GCOPY (see also CUT).

10 SCREEN 320,200,2

20 BOX 60,60,300,180,1 :REM DRAW A WHITE BOX

30 GCOPY 140,80,40,40 :REM COPY A 40 * 40 REGION

40 PASTE 10,10,40,40 :REM PASTE IT TO NEW POSITION

50 GETKEY A$:REM WAIT FOR KEYPRESS

60 SCREEN CLOSE

121

GET
Token: $A1

Format: GET variable

Usage: Gets the next character, or byte value of the next character, from the
keyboard queue.

If the variable being set to the character is of type string and the queue is
empty, an empty string is assigned to it, otherwise a one character string
is created and assigned instead. If the variable is of type numeric, the
byte value of the key is assigned to it, otherwise zero will be assigned if
the queue is empty. GET does not wait for keyboard input, so it’s useful
to check for key presses at regular intervals or in loops.

Remarks: GETKEY is similar, but waits until a key has been pressed.

Example: Using GET:

10 DO: GET A$: LOOP UNTIL A$ <> ""

40 IF A$ = "W" THEN 1000 :REM GO NORTH

50 IF A$ = "A" THEN 2000 :REM GO WEST

60 IF A$ = "S" THEN 3000 :REM GO EAST

70 IF A$ = "Z" THEN 4000 :REM GO SOUTH

80 IF A$ = CHR$(13) THEN 5000 :REM RETURN

90 GOTO 10

122

GET#
Token: $A1 ’#’

Format: GET# channel, variable [, variable …]

Usage: Reads a single byte from the channel argument and assigns single char-
acter strings to string variables, or an 8-bit binary value to numeric vari-
ables.

This is useful for reading characters (or bytes) from an input stream one
byte at a time.

channel number, which was given to a previous call to commands such
as DOPEN, or OPEN.

Remarks: All values from 0 to 255 are valid, so GET# can also be used to read
binary data.

Example: Using GET# to read a disk directory:

1 REM GET#

10 OPEN 2,8,0,"$" : REM OPEN CATALOG

15 IF DS THEN PRINT DS$: STOP: REM CANT READ

20 GET#2,D$,D$: REM DISCARD LOAD ADDRESS

25 DO : REM LINE LOOP

30 GET#2,D$,D$: REM DISCARD LINE LINK

35 IF ST THEN EXIT : REM END-OF-FILE

40 GET#2,LO,HI : REM FILE SIZE BYTES

45 S=LO + 256 * HI : REM FILE SIZE

50 LINE INPUT#2, F$: REM FILE NAME

55 PRINT S;F$: REM PRINT FILE ENTRY

60 LOOP

65 CLOSE 2

123

GETKEY
Token: $A1 $F9 (GET token and KEY token)

Format: GETKEY variable

Usage: Gets the next character, or byte value of the next character, from the
keyboard queue. If the queue is empty, the program will wait until a key
has been pressed.

After a key has been pressed, the variable will be set and program exe-
cution will continue. When used with a string variable, a one character
string is created and assigned. Otherwise if the variable is of type nu-
meric, the byte value is assigned.

Example: Using GETKEY:

10 GETKEY A$:REM WAIT AND GET CHARACTER

40 IF A$ = "W" THEN 1000 :REM GO NORTH

50 IF A$ = "A" THEN 2000 :REM GO WEST

60 IF A$ = "S" THEN 3000 :REM GO EAST

70 IF A$ = "Z" THEN 4000 :REM GO SOUTH

80 IF A$ = CHR$(13) THEN 5000 :REM RETURN

90 GOTO 10

124

GO64
Token: $CB $36 $34 (GO token and 64)

Format: GO64

Usage: Switches the MEGA65 to C64-compatible mode.

If you’re in direct mode, a security prompt ARE YOU SURE? is displayed, which
must be responded with Y to continue.

You can switch back to MEGA65 mode with this command: SYS58552

Example: Using GO64:

GO64

ARE YOU SURE?

125

GOSUB
Token: $8D

Format: GOSUB line

Usage: GOSUB (GOto SUBroutine) continues program execution at the given
BASIC line number, saving the current BASIC program counter and line
number on the run-time stack. This enables the resumption of execution
after theGOSUB statement, once a RETURN statement in the called sub-
routine is executed. Calls to subroutines via GOSUB may be nested, but
the subroutines must always end with RETURN, otherwise a stack over-
flow may occur.

Remarks: Unlike other programming languages, BASIC 65 does not support argu-
ments or local variables for subroutines.
Programs can be optimised by grouping subroutines at the beginning of
the program source. The GOSUB calls will then have low line numbers
with fewer digits to decode. The subroutines will also be found faster,
since the search for subroutines often starts at the beginning of the pro-
gram.

Example: Using GOSUB:

10 GOTO 100 :REM TO MAIN PROGRAM

20 REM *** SUBROUTINE DISK STATUS CHECK ***

30 DD=DS:IF DD THEN PRINT "DISK ERROR";DS$

40 RETURN

50 REM *** SUBROUTINE PROMPT Y/N ***

60 DO:INPUT "CONTINUE (Y/N)";A$

70 LOOP UNTIL A$="Y" OR A$="N"

80 RETURN

90 REM *** MAIN PROGRAM ***

100 DOPEN#2,"BIG DATA"

110 GOSUB 30: IF DD THEN DCLOSE#2:GOSUB 60:REM ASK

120 IF A$="N" THEN STOP

130 GOTO 100: REM RETRY

126

GOTO
Token: $89 (GOTO) or $CB $A4 (GO TO)

Format: GOTO line
GO TO line

Usage: Continues program execution at the given BASIC line number.

Remarks: If the target line number is higher than the current line number, the search
starts from the current line, proceeding to higher line numbers. If the
target line number is lower, the search starts at the first line number of
the program. It is possible to optimise the run-time speed of the program
by grouping often used targets at the start (with lower line numbers).

GOTO (written as a single word) executes faster than GO TO.

Example: Using GOTO:

10 GOTO 100 :REM TO MAIN PROGRAM

20 REM *** SUBROUTINE DISK STATUS CHECK ***

30 DD=DS:IF DD THEN PRINT "DISK ERROR";DS$

40 RETURN

50 REM *** SUBROUTINE PROMPT Y/N ***

60 DO:INPUT "CONTINUE (Y/N)";A$

70 LOOP UNTIL A$="Y" OR A$="N"

80 RETURN

90 *** MAIN PROGRAM ***

100 DOPEN#2,"BIG DATA"

110 GOSUB 30: IF DD THEN DCLOSE#2:GOSUB 60:REM ASK

120 IF A$="N" THEN STOP

130 GOTO 100: REM RETRY

127

GRAPHIC
Token: $DE

Format: GRAPHIC CLR

Usage: Bitmap graphics: initialises the BASIC bitmap graphics system. It clears
the graphics memory and screen, and sets all parameters of the graphics
context to their default values.

Once the graphics system has been cleared, commands such as LINE,
PALETTE, PEN,SCNCLR, andSCREEN can be used to set graphics system
parameters.

Example: Using GRAPHIC:

100 REM GRAPHIC

110 GRAPHIC CLR : REM INITIALISE

120 SCREEN DEF 1,1,1,2 : REM 640 X 400 X 2

130 SCREEN OPEN 1 : REM OPEN IT

140 SCREEN SET 1,1 : REM VIEW IT

150 PALETTE 1,0,0, 0,0 : REM BLACK

160 PALETTE 1,1,0,15,0 : REM GREEN

170 SCNCLR 0 : REM FILL SCREEN WITH BLACK

180 PEN 0,1 : REM SELECT PEN

190 LINE 50,50,590,350 : REM DRAW LINE

200 GETKEY A$: REM WAIT FOR KEYPRESS

210 SCREEN CLOSE 1 : REM CLOSE SCREEN AND RESTORE PALETTE

128

HEADER
Token: $F1

Format: HEADER diskname [,I id] [,D drive] [,U unit]

Usage: Formats a disk. This erases all data on the disk.

I The disk ID.

diskname is either a quoted string, e.g. "DATA" or a string expression in
brackets, e.g. (DN$). The maximum length of diskname is 16 characters.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: HEADER is another name for the FORMAT command.

For new floppy disks which have not already been formatted in MEGA65
(1581) format, it is necessary to specify the disk ID with the I parame-
ter. This switches the format command to low level format, which writes
sector IDs and erases all contents. This takes some time, as every block
on the floppy disk will be written.

If the I parameter is omitted, a quick format will be performed. This is
only possible if the disk has already been formatted as a MEGA65 or
1581 floppy disk. A quick format writes the new disk name and clears
the block allocation map, marking all blocks as free. The disk ID is not
changed, and blocks are not overwritten, so contents may be recovered
with ERASE R. You can read more about ERASE on page 102.

Examples: Using HEADER

HEADER "ADVENTURE",IDK : FORMAT DISK WITH NAME ADVENTURE AND ID DK

HEADER "ZORK-I",U9 : FORMAT DISK IN UNIT 9 WITH NAME ZORK-I

HEADER "DUNGEON",D1,U10: FORMAT DISK IN DRIVE 1 UNIT 10 WITH NAME DUNGEON

129

HELP
Token: $EA

Format: HELP

Usage: Displays information about where an error occurred in a BASIC program.

When the BASIC program stops due to an error, HELP can be used to
gain further information. The interpreted line is listed, with the erroneous
statement highlighted or underlined.

Remarks: Displays BASIC errors. For errors related to disk I/O, the disk status vari-
able DS or the disk status string DS$ should be used instead.

Example: Using HELP

10 A=1.E20

20 B=A+A:C=EXP(A):PRINT A,B,C

RUN

?OVERFLOW ERROR IN 20

READY.

HELP

20 B=A+A:ţŝťŸŰňšŉ:PRINT A,B,C

130

HEX$
Token: $D2

Format: HEX$(numeric expression)

Returns: A four character hexadecimal representation of the argument.

The argument must be in the range of 0 – 65535, corresponding to the
hex numbers $0000-$FFFF.

Remarks: If real numbers are used as arguments, the fractional part will be ignored.
In other words, real numbers will not be rounded.

Example: Using HEX$:

PRINT HEX$(10),HEX$(100),HEX$(1000.9)

000A 0064 03E8

131

HIGHLIGHT
Token: $FE $3D

Format: HIGHLIGHT colour [, mode]

Usage: Sets the colours used for code highlighting.

Different colours can be set for system messages, REM statements and
BASIC 65 keywords.

colour is one of the first 16 colours in the current palette. See appendix
6 on page 297 for the list of colours in the default system palette.

mode indicates what the colour will be used for.

• 0 system messages (the default mode)

• 1 REM statements

• 2 BASIC keywords

Remarks: The system messages colour is used when displaying error messages, and
in the output of CHANGE, FIND, and HELP. The colours for REM state-
ments and BASIC keywords are used by LIST.

Example: Using HIGHLIGHT to change the colour of BASIC keywords to red.

132

IF
Token: $8B

Format: IF expression THEN true clause [ELSE false clause]

Usage: Starts a conditional execution statement.

expression a logical or numeric expression. A numeric expression is
evaluated as FALSE if the value is zero and TRUE for any non-zero value.

true clause one or more statements starting directly after THEN on the
same line. A line number after THEN performs a GOTO to that line in-
stead.

false clause one or more statements starting directly after ELSE on the
same line. A linenumber after ELSE performs aGOTO to that line instead.

Remarks: The standard IF ... THEN ... ELSE structure is restricted to a single line.
But the true clause and false clause may be expanded to several lines
using a compound statement surrounded with BEGIN and BEND.

Example: Using IF

1 REM IF

10 RED$=CHR$(28) : BLACK$=CHR$(144) : WHITE$=CHR$(5)

20 INPUT "ENTER A NUMBER";V

30 IF V<0 THEN PRINT RED$; : ELSE PRINT BLACK$;

40 PRINT V : REM PRINT NEGATIVE NUMBERS IN RED

50 PRINT WHITE$

60 INPUT "END PROGRAM: (Y/N)"; A$

70 IF A$="Y" THEN END

80 IF A$="N" THEN 20 : ELSE 60

133

IMPORT
Token: $DD

Format: IMPORT filename [,D drive] [,U unit]

Usage: Loads BASIC code in text format from a file of type SEQ into memory
reserved for BASIC programs.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: The program is loaded into BASIC memory and converted from text to
the tokenised form of PRG files. This enables loading of BASIC programs
that were saved as plain text files as program listing.

After loading, the program is re-linked and ready to be RUN or edited. It
is possible to use IMPORT for merging a program text file from disk to a
program already in memory. Each line read from the file is processed in
the same way, as if typed from the user with the screen editor.

There is no EXPORT counterpart, because this function is already avail-
able. The sequence DOPEN#1,"LISTING",W:CMD 1:LIST:DCLOSE#1 converts the program
in memory to text and writes it to the file, that is named in the DOPEN
statement.

Examples: Using IMPORT

IMPORT "APOCALYPSE"

IMPORT "MEGA TOOLS",U9

IMPORT (FI$),U(UN%)

134

INFO
Token: $FE $4D

Format: INFO

Usage: Displays information about the runtime environment.

Remarks: The INFO command displays information about the BASIC runtime envi-
ronment, including:

• The video mode (PAL, NTSC)

• The version of the ROM

• The CPU speed

• The current MEM setting

• Memory used and memory available for program text and variables

Examples: Using INFO

INFO

135

INPUT
Token: $85

Format: INPUT [prompt <, | ;>] variable [, variable ...]

Usage: Prompts the user for keyboard input, printing an optional prompt string
and question mark to the screen.

prompt optional string expression to be printed as the prompt

If the separator between prompt and variable list is a comma, the cur-
sor is placed directly after the prompt. If the separator is a semicolon, a
question mark and a space is added to the prompt instead.

variable list list of one or more variables that receive the input

The input will be processed after the user presses RETURN .

Remarks: The user must take care to enter the correct type of input, so it matches
the variable list types. Also, the number of input items must match the
number of variables. A surplus of input items will be ignored, whereas
too few input items trigger another request for input with the prompt ??.
Typing non numeric characters for integer or real variables will produce a
TYPE MISMATCH ERROR. Strings for string variables must be in double quotes (”) if
they contain spaces or commas. Many programs that need a safe input
routine use LINE INPUT and a custom parser, in order to avoid program
errors by wrong user input.

Example: Using INPUT:

10 DIM N$(100),A%(100),S$(100):

20 DO

30 INPUT "NAME, AGE, GENDER";NA$,AG%,SE$

40 IF NA$="" THEN 30

50 IF NA$="END" THEN EXIT

60 IF AG% < 18 OR AG% > 100 THEN PRINT "AGE?":GOTO 30

70 IF SE$ <> "M" AND SE$ <> "F" THEN PRINT "GENDER?":GOTO 30

80 REM CHECK OK: ENTER INTO ARRAY

90 N$(N)=NA$:A%(N)=AG%:S$(N)=SE$:N=N+1

100 LOOP UNTIL N=100

110 PRINT "RECEIVED";N;" NAMES"

136

INPUT#
Token: $84

Format: INPUT# channel, variable [, variable ...]

Usage: Reads a record from an input device, e.g. a disk file, and assigns the
data to the variables in the list.

channel number, which was given to a previous call to commands such
as DOPEN, or OPEN.

variable list list of one or more variables, that receive the input.

The input record must be terminated by a RETURN character and must
be not longer than the input buffer (160 characters).

Remarks: The type and number of data in a record must match the variable list.
Reading non numeric characters for integer or real variables will produce
a FILE DATA ERROR. Strings for string variables have to be put in quotes if they
contain spaces or commas.
LINE INPUT# may be used to read a whole record into a single string
variable.

Sequential files, that can be read by INPUT# can be generated by pro-
grams with PRINT# or with the editor of the MEGA65. For example:

EDIT ON

10 "CHUCK PEDDLE",1937,"ENGINEER OF THE 6502"

20 "JACK TRAMIEL",1928,"FOUNDER OF CBM"

30 "BILL MENSCH",1945,"HARDWARE"

DSAVE "CBM-PEOPLE"

EDIT OFF

Example: Using INPUT#:

137

10 DIM N$(100),B%(100),S$(100):

20 DOPEN#2,"CBM-PEOPLE":REM OPEN SEQ FILE

25 IF DS THEN PRINT DS$:STOP:REM OPEN ERROR

30 FOR I=0 TO 100

40 INPUT#2,N$(I),B%(I),S$(I)

50 IF ST AND 64 THEN 80:REM END OF FILE

60 IF DS THEN PRINT DS$:GOTO 80:REM DISK ERROR

70 NEXT I

80 DCLOSE#2

110 PRINT "READ";I+1;" RECORDS"

120 FOR J=0 TO I:PRINT N$(J):NEXT J

RUN

READ 3 RECORDS

CHUCK PEDDLE

JACK TRAMIEL

BILL MENSCH

TYPE "CBM-PEOPLE"

"CHUCK PEDDLE",1937,"ENGINEER OF THE 6502"

"JACK TRAMIEL",1928,"FOUNDER OF CBM"

"BILL MENSCH",1945,"HARDWARE"

138

INSTR
Token: $D4

Format: INSTR(haystack, needle [, start])

Usage: Locates the position of the string expression needle in the string expres-
sion haystack, and returns the index of the first occurrence, or zero if
there is no match.

The string expression haystack is searched for the occurrence of the
string expression needle.

An enhanced version of string search using pattern matching is used if
the first character of the search string is a pound sign ’£’. The pound sign
is not part of the search but enables the use of the ’.’ (dot) as a wildcard
character, which matches any character. The second special pattern
character is the ’*’ (asterisk) character. The asterisk in the search string
indicates that the preceding character may never appear, appear once,
or repeatedly in order to be considered as a match.

The optional argument start is an integer expression, which defines the
starting position for the search in haystack. If not present, it defaults to
one.

Remarks: If either string is empty or there is no match the function returns zero.

Examples: Using INSTR:

I = INSTR("ABCDEF","CD") : REM I = 3

I = INSTR("ABCDEF","XY") : REM I = 0

I = INSTR("RAIIIN","\A*IN") : REM I = 5

I = INSTR("ABCDEF","\C.E") : REM I = 3

I = INSTR(A$+B$,C$)

139

INT
Token: $B5

Format: INT(numeric expression)

Returns: The integer part of a number.

This function is NOT limited to the typical 16-bit integer range (-32768
to 32767), as it uses real arithmetic. The allowed range is therefore
determined by the size of the real mantissa which is 32-bits wide (-
2147483648 to 2147483647).

Remarks: It is not necessary to use the INT function for assigning real values to
integer variables, as this conversion will be done implicitly, but only for
the 16-bit range.

Examples: Using INT:

X = INT(1.9) :REM X = 1

X = INT(-3.1) :REM X = -3

X = INT(100000.5) :REM X = 100000

N% = INT(100000.5) :REM ?ILLEGAL QUANTITY ERROR

140

JOY
Token: $CF

Format: JOY(port)

Returns: The state of the joystick for the selected controller port (1 or 2).

Bit 7 contains the state of the fire button. The stick can be moved in eight
directions, which are numbered clockwise starting at the upper position.

Left Centre Right
Up 8 1 2

Centre 7 0 3
Down 6 5 4

Example: Using JOY:

10 N = JOY(1)

20 IF N AND 128 THEN PRINT "FIRE! ";

30 REM N NE E SE S SW W NW

40 ON N AND 15 GOSUB 100,200,300,400,500,600,700,800

50 GOTO 10

100 PRINT "GO NORTH" :RETURN

200 PRINT "GO NORTHEAST":RETURN

300 PRINT "GO EAST" :RETURN

400 PRINT "GO SOUTHEAST":RETURN

500 PRINT "GO SOUTH" :RETURN

600 PRINT "GO SOUTHWEST":RETURN

700 PRINT "GO WEST" :RETURN

800 PRINT "GO NORTHWEST":RETURN

141

KEY
Token: $F9

Format: KEY
KEY <ON | OFF>
KEY <LOAD | SAVE> filename
KEY number, string

Usage: Manages the function key macros in the BASIC editor.

Each function key can be assigned a string that is typed when pressed.
The function keys have default assignments on boot, and can be changed
by the KEY command.

KEY : list current assignments.

KEY ON : switch on function key strings. The keys will send assigned
strings if pressed.

KEY OFF : switch off function key strings. The keys will send their char-
acter code if pressed.

KEY LOAD filename : loads key definitions from file.

KEY SAVE filename : saves key definitions to file.

KEY number, string : assigns the string to the key with the given number.

number can be any value within this range:

• 1 - 14: corresponds to keys ranging from F1 to F14

• 15: corresponds to HELP

• 16: corresponds to SHIFT RUN
STOP

Default assignments:

142

KEY

KEY 1,CHR$(27)+"X"

KEY 2,CHR$(27)+"@"

KEY 3,"DIR"+CHR$(13)

KEY 4,"DIR "+CHR$(34)+"*=PRG"+CHR$(34)+CHR$(13)

KEY 5,"ŵ"

KEY 6,"KEY6"+CHR$(141)

KEY 7,"ŷ"

KEY 8,"MONITOR"+CHR$(13)

KEY 9,"Ű"

KEY 10,"KEY10"+CHR$(141)

KEY 11,"Ŷ"

KEY 12,"KEY12"+CHR$(141)

KEY 13,CHR$(27)+"O"

KEY 14,"Ŵ"+CHR$(27)+"O"

KEY 15,"HELP"+CHR$(13)

KEY 16,"RUN "+CHR$(34)+"*"+CHR$(34)+CHR$(13)

Remarks: The sum of the lengths of all assigned strings must not exceed 240 char-
acters. Special characters such as RETURN or QUOTE are entered using
their codes with the CHR$ function. Refer to CHR$ on page 47 for more
information.

Examples: Using KEY:

KEY ON :REM ENABLE FUNCTION KEYS

KEY OFF :REM DISABLE FUNCTION KEYS

KEY :REM LIST ASSIGNMENTS

KEY 2,"PRINT ~"+CHR$(14) :REM ASSIGN PRINT PI TO F2

KEY SAVE "MY KEY SET" :REM SAVE CURRENT DEFINITIONS TO FILE

KEY LOAD "ELEVEN-SET" :REM LOAD DEFINITIONS FROM FILE

143

LEFT$
Token: $C8

Format: LEFT$(string, n)

Returns: A string containing the first n characters from the argument string.

If the length of string is equal to or less than n, the resulting string will
be identical to the argument string.

string a string expression

n a numeric expression (0 – 255)

Remarks: Empty strings and zero length strings are legal values.

Example: Using LEFT$:

PRINT LEFT$("MEGA-65",4)

MEGA

144

LEN
Token: $C3

Format: LEN(string)

Returns: The length of a string.

string a string expression

Remarks: Commodore BASIC strings can contain any character, including the null
character. Internally, the length of a string is stored in a string descriptor.

Example: Using LEN:

PRINT LEN("MEGA-65"+CHR$(13))

8

145

LET
Token: $88

Format: [LET] variable = expression

Usage: Assigns values (or results of expressions) to variables.

Remarks: The LET statement is obsolete and not required. Assignment to variables
can be done without using LET, but it has been left in BASIC 65 for back-
wards compatibility.

Examples: Using LET:

LET A=5 :REM LONGER AND SLOWER

A=5 :REM SHORTER AND FASTER

146

LINE
Token: $E5

Format: LINE xbeg, ybeg [, xnext1, ynext1 ...]

Usage: Bitmap graphics: draws a line or series of lines.

If only one coordinate pair is given, LINE draws a dot.

If more than one pair is defined, a line is drawn on the current graphics
screen from the coordinate (xbeg/ybeg) to the next coordinate pair(s).

All currently defined modes and values of the graphics context are used.

Example: Using LINE:

1 REM SCREEN EXAMPLE 1

10 SCREEN 320,200,2 :REM SCREEN #0 320 X 200 X 2

20 PEN 1 :REM DRAWING PEN COLOUR 1 (WHITE)

30 LINE 25,25,295,175 :REM DRAW LINE

40 GETKEY A$:REM WAIT FOR KEYPRESS

50 SCREEN CLOSE :REM CLOSE SCREEN AND RESTORE PALETTE

147

LINE INPUT
Token: $E5 $85

Format: LINE INPUT [prompt <, | ;>] string variable [, string variable ...]

Usage: Prompts the user for keyboard input, printing an optional prompt string
and question mark to the screen.

prompt optional string expression to be printed as the prompt

If the separator between prompt and the first string variable is a
comma, the cursor is placed directly after the prompt. If the separa-
tor is a semicolon, a question mark and a space is added to the prompt
instead.

string variable one or more string variables that accept one line of input
each

Remarks: This differs from INPUT in how the input is parsed. LINE INPUT accepts

every character entered on a line as a single string value. Only the RETURN

key does not produce a character.

If the variable list has more than one variable, LINE INPUT will use the
entire first line for the first variable, and present the ?? prompt for each
subsequent variable.

LINE INPUT only works with string variables. If a non-string variable is
used, LINE INPUT throws produces a TYPE MISMATCH ERROR after data has been
entered.

Example: Using LINE INPUT:

10 LINE INPUT "ENTER A PHRASE: ",PH$

20 PRINT "THE PHRASE YOU ENTERED:";CHR$(13);" ";PH$

RUN

ENTER A PHRASE: YOU SAY "POTATO," I SAY "POTATO."

THE PHRASE YOU ENTERED:

YOU SAY "POTATO," I SAY "POTATO."

148

LINE INPUT#
Token: $E5 $84

Format: LINE INPUT# channel, variable [, variable ...]

Usage: Reads one record per variable from an input device, (such as a disk drive)
and assigns the read data to the variable.

The records must be terminated by a RETURN character, which will not
be copied to the string variable. Therefore, an empty line consisting of
only the RETURN character will result in an empty string being assigned.

channel number, which was given to a previous call to commands such
as DOPEN, or OPEN.

variable list list of one or more variables, that receive the input.

Remarks: Only string variables or string array elements can be used in the variable
list. Unlike other INPUT commands, LINE INPUT# does not interpret or
remove quote characters in the input. They are accepted as data, as all
other characters.

Records must not be longer than the input buffer, which is 160 charac-
ters.

Example: Using LINE INPUT#:

10 DIM N$(100)

20 DOPEN#2,"DATA"

30 FOR I=0 TO 100

40 LINE INPUT#2,N$(I)

50 IF ST=64 THEN 80:REM END OF FILE

60 IF DS THEN PRINT DS$:GOTO 80:REM DISK ERROR

70 NEXT I

80 DCLOSE#2

110 PRINT "READ";I;" RECORDS"

149

LIST
Token: $9B

Format: LIST [P] [line range]

Usage: Lists a range of lines from the BASIC program in memory.

Given a single line number, LIST lists that line.

Given a range of line numbers, LIST lists all lines in that range. A range
can be two numbers separated by a hyphen (-), or it can omit the begin-
ning or end of the range to imply the beginning or end of the program.
(See examples below.)

Format: LIST [P] filename [,U unit]

Usage: Lists a range of lines from a BASIC program directly from a file.

Remarks: The optional parameter P enables page mode. After listing a screenful
of lines, the listing will stop and display the prompt [MORE] at the bottom of
the screen. Pressing Q quits page mode, while any other key continues
to the next page.

LIST output can be redirected to other devices via CMD.

Another way to display a program listing from memory on the screen is to

use the keys F9 and F11 , or Ctrl P and Ctrl V , to scroll
a BASIC listing on screen up or down.

Examples: Using LIST

LIST 100 :REM LIST LINE 100

LIST 240-350 :REM LIST ALL LINES FROM 240 TO 350

LIST 500- :REM LIST FROM 500 TO END

LIST -70 :REM LIST FROM START TO 70

LIST "DEMO" :REM LIST FILE "DEMO"

LIST P :REM LIST PROGRAM IN PAGE MODE

LIST P "MURX" :REM LIST FILE "MURX" IN PAGE MODE

150

LOAD
Token: $93

Format: LOAD filename [, unit [, flag]]
LOAD ”$[pattern=type]” [, unit]
LOAD ”$$[pattern=type]” [, unit]
/ filename [, unit [, flag]]

Usage: The first form loads a file of type PRG into memory reserved for BASIC
programs.

The second form loads a directory into memory, which can then be
viewed with LIST. It is structured like a BASIC program, but file sizes are
displayed instead of line numbers.

The third form is similar to the second one, but the files are numbered.
This listing can be scrolled like a BASIC program with the keys F9 or
F11 , edited, listed, saved or printed.

A filter can be applied by specifying a pattern or a pattern and a type.
The asterisk matches the rest of the name, while the ? matches any
single character. The type specifier can be a character of (P,S,U,R), that
is Program, Sequential, User, or Relative file.

A common use of the shortcut symbol / is to quickly load PRG files. To do
this:

1. Print a disk directory using either DIR, or CATALOG.

2. Move the cursor to the desired line.

3. type / in the first column of the line, and press RETURN .

After pressing RETURN , the listed file on the line with the leading / will be
loaded. Characters before and after the file name double quotes (”) will
be ignored. This applies to PRG files only.

filename is either a quoted string, e.g. "PROG", or a string expression.

The unit number is optional. If not present, the default disk device is
assumed.

If flag has a non-zero value, the file is loaded to the address which is
read from the first two bytes of the file. Otherwise, it is loaded to the
start of BASIC memory and the load address in the file is ignored.

Remarks: LOAD loads files of type PRG into RAM bank 0, which is also used for
BASIC program source.

LOAD ”*” can be used to load the first PRG from the given unit.

151

LOAD ”$” can be be used to load the list of files from the given unit.
When using LOAD ”$”, LIST can be used to print the listing to screen.

LOAD is implemented in BASIC 65 to keep it backwards compatible with
BASIC V2.

The shortcut symbol / can only be used in direct mode.

By default the C64 uses unit 1, which is assigned to datasette tape
recorders connected to the cassette port. However the MEGA65 uses
unit 8 by default, which is assigned to the internal disk drive. This means
you don’t need to add ,8 to LOAD commands that use it.

Examples: Using LOAD

LOAD "APOCALYPSE" :REM LOAD A FILE CALLED APOCALYPSE TO BASIC MEMORY

LOAD "MEGA TOOLS",9 :REM LOAD A FILE CALLED "MEGA TOOLS" FROM UNIT 9 TO BASIC MEMORY

LOAD "*",8,1 :LOAD THE FIRST FILE ON UNIT 8 TO RAM AS SPECIFIED IN THE FILE

LOAD "$" :REM LOAD WHOLE DIRECTORY - WITH FILE SIZES

LOAD "$$" :REM LOAD WHOLE DIRECTORY - SCROLLABLE

LOAD "$$X*=P" :REM DIRECTORY, WITH PRG FILES STARTING with 'X'

152

LOADIFF
Token: $FE $43

Format: LOADIFF filename [,D drive] [,U unit]

Usage: Bitmap graphics: loads an IFF file into graphics memory.

The IFF (Interchange File Format) is supported by many different appli-
cations and operating systems. LOADIFF assumes that files contain bit-
plane graphics which match the currently active graphics screen for res-
olution and colour depth.

Supported resolutions are:

Width Height Bitplanes Colours Memory
320 200 max. 8 max. 256 max. 64 K
640 200 max. 8 max. 256 max. 128 K
320 400 max. 8 max. 256 max. 128 K
640 400 max. 4 max. 16 max. 128 K

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: Tools are available to convert popular image formats to IFF. These tools
are available on several operating systems, such as AMIGA OS, macOS,
Linux, and Windows. For example, ImageMagick is a free graphics
package that includes a tool called convert, which can be used to cre-
ate IFF files in conjunction with the ppmtoilbm tool from the Netbpm
package.

To use convert and ppmtoilbm for converting a JPG file to an IFF file on
Linux:

convert <myImage.jpg> <myImage.ppm>
ppmtoilbm -aga <myImage.ppm> > <myImage.iff>

Example: Using LOADIFF

153

100 BANK128:SCNCLR

110 REM DISPLAY PICTURES IN 320 X 200 X 7 RESOLUTION

120 GRAPHIC CLR:SCREEN DEF 0,0,0,7:SCREEN OPEN 0:SCREEN SET 0,0

130 FORI=1TO7: READF$

140 LOADIFF(F$+".IFF"):SLEEP 4:NEXT

150 DATA ALIEN,BEAKER,JOKER,PICARD,PULP,TROOPER,RIPLEY

160 SCREEN CLOSE 0

170 PALETTE RESTORE

154

LOCK
Token: $FE $50

Format: LOCK filename/pattern [,D drive] [,U unit]

Usage: Locks a file on disk, preventing it from being updated or deleted.

The specified file or a set of files, that matches the pattern, is locked and
cannot be deleted with the commands DELETE, ERASE or SCRATCH.

The command UNLOCK removes the lock.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: In direct mode the number of locked files is printed. The second to last
number from the message contains the number of locked files,

Examples: Using LOCK

LOCK "DRM",U9 :REM LOCK FILE DRM ON UNIT 9

03,FILES LOCKED,01,00

LOCK "BS*" :REM LOCK ALL FILES BEGINNING WITH "BS"

03,FILES LOCKED,04,00

155

LOG
Token: $BC

Format: LOG(numeric expression)

Returns: The natural logarithm of a number.

The natural logarithm uses Euler’s number (2.71828183) as base, not
base 10 which is typically used in log functions on a pocket calculator.

Remarks: The log function with base 10 can be computed by dividing the result by
log(10). LOG10() provides this feature as a function.

Example: Using LOG

PRINT LOG(1)

0

PRINT LOG(0)

?ILLEGAL QUANTITY ERROR

PRINT LOG(4)

1.38629436

PRINT LOG(100) / LOG(10)

2

156

LOG10
Token: $CE $08

Format: LOG10(numeric expression)

Returns: The decimal logarithm of the argument.

The decimal logarithm uses 10 as base.

Example: Using LOG10

PRINT LOG10(1)

0

PRINT LOG10(0)

?ILLEGAL QUANTITY ERROR

PRINT LOG10(5)

0.69897

PRINT LOG10(100);LOG10(10);LOG10(1);LOG10(0.1);LOG10(0.01)

2 1 0 -1 -2

157

LOOP
Token: $EC

Format: DO ... LOOP
DO [<UNTIL | WHILE> logical expression]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> logical expression]

Usage: DO and LOOP define the start of a BASIC loop. Using DO and LOOP
alone without any modifiers creates an infinite loop, which can only be
exited by the EXIT statement. The loop can be controlled by adding
UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement only exits the current loop.

Examples: Using DO and LOOP

10 PW$="":DO

20 GET A$:PW$=PW$+A$

30 LOOP UNTIL LEN(PW$)>7 OR A$=CHR$(13)

10 DO : REM WAIT FOR USER DECISION

20 GET A$

30 LOOP UNTIL A$="Y" OR A$="N" OR A$="y" OR A$="n"

10 DO WHILE ABS(EPS) > 0.001

20 GOSUB 2000 : REM ITERATION SUBROUTINE

30 LOOP

10 I%=0 : REM INTEGER LOOP 1-100

20 DO I%=I%+1

30 LOOP WHILE I% < 101

158

LPEN
Token: $CE $04

Format: LPEN(coordinate)

Returns: The state of a light pen peripheral.

This function requires the use of a CRT monitor (or TV), and a light pen. It
will not work with an LCD or LED screen. The light pen must be connected
to port 1.

LPEN(0) returns the X position of the light pen, the range is 60 – 320.

LPEN(1) returns the Y position of the light pen, the range is 50 – 250.

Remarks: The X resolution is two pixels, therefore LPEN(0) only returns even num-
bers. A bright background colour is needed to trigger the light pen. The
COLLISION statement may be used to enable an interrupt handler.

Example: Using LPEN

PRINT LPEN(0),LPEN(1) :REM PRINT LIGHT PEN COORDINATES

159

MEM
Token: $FE $23

Format: MEM mask4,mask5

Usage: Reserves memory in banks 4 or 5 such that the bitmap graphics system
will not use it.

mask4 and mask5 are byte values, that are interpreted as mask of 8
bits. Each bit set to 1 reserves an 8K segment of memory in bank 4 for
the first argument and in bank 5 for the second argument.

bit memory segment
0 $0000 - $1FFF
1 $2000 - $3FFF
2 $4000 - $5FFF
3 $6000 - $7FFF
4 $8000 - $9FFF
5 $A000 - $BFFF
6 $C000 - $DFFF
7 $E000 - $FFFF

Remarks: After reserving memory with MEM the graphics library will not use the
reserved areas, so it can be used for other purposes. Access to bank 4
and 5 is possible with the commands PEEK, WPEEK, POKE, WPOKE and
EDMA.

If a graphics screen cannot be opened, because the remaining memory
is not sufficient, the program stops with a ?OUT OF MEMORY ERROR.

Some direct mode commands like RENUMBER use memory in banks 4
and 5 and do not honour MEM reservations. Such reservations are only
guaranteed during program execution.

When 80 × 50 text mode is enabled, segment 0 is reserved automati-
cally and used for screen data. It always uses segment 0, even if it was
previously reserved with MEM or a graphic screen. If your program uses
80 × 50 text mode and also reserves a region with MEM, be sure to set
region 0 as reserved, and do not use it for other purposes.

Example: Using MEM

10 MEM 1,3 :REM RESERVE $40000 - $41FFF AND $50000 - $53FFF

20 SCREEN 320,200 :REM SCREEN WILL NOT USE RESERVED SEGMENTS

40 EDMA 3,$2000,0,$4000:REM FILL SEGMENT WITH ZEROES

160

MERGE
Token: $E6

Format: MERGE filename [,D drive] [,U unit]

Usage: Loads a BASIC program file from disk and appends it to the program in
memory.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: The load address that is stored in the first two bytes of the file is ignored.
The loaded program does not replace a program in memory (which is
what DLOAD does), but is appended to a program in memory. After
loading, the program is re-linked and ready to run or edit.

It is the user’s responsibility to ensure that there are no line number con-
flicts among the program in memory and the merged program. The first
line number of the merged program must be greater than the last line
number of the program in memory.

Example: Using MERGE

DLOAD "MAIN PROGRAM"

MERGE "LIBRARY"

161

MID$
Token: $CA

Format: MID$(string, index, n)
MID$(string variable, index, n) = string expression

Usage: As a function, the substring of a string. As a statement, replaces a sub-
string of a string variable with another string.

string a string expression.

index start index (1 – 255).

n length of sub-string (0 – 255).

Remarks: Empty strings and zero lengths are legal values.

Example: Using MID$:

10 A$ = "MEGA-65"

20 PRINT MID$(A$,3,4)

30 MID$(A$,5,1) = "+"

40 PRINT A$

RUN

GA-6

MEGA+65

162

MKDIR
Token: $FE $51

Format: MKDIR dirname ,L size [,U unit]

Usage: Makes (creates) a subdirectory on a floppy or D81 disk image.

dirname the name of a directory. Either a quoted string such as "SOMEDIR",
or a string expression in brackets such as (DR$).

MKDIR can only be used on units managed by CBDOS. These are the in-
ternal floppy disk drive and SD-Card images of D81 type. The command
cannot be used on external drives connected to the serial IEC bus.

The size parameter specifies the number of tracks, to be reserved for the
subdirectory, with one track = 40 sectors at 256 byte. The first track of
the reserved range is used as directory track for the subdirectory.

The minimum size is 3 tracks, the maximm 38 tracks. There must be a
contiguous region of empty tracks on the floppy (D81 image), that is
large enough for the creation of the subdirectory. The error message DISK

FULL is reported if there isn’t such a region.

Several subdirectories may be created as long as there are enough
empty tracks.

After successful creation of the subdirectory an automatic CHDIR into
this subdirectory is performed.

CHDIR ”/” changes back to the root directory.

Examples: Using MKDIR

MKDIR "SUBDIR",L5 :REM MAKE SUBDIRECTORY WITH 5 TRACKS

DIR

0 "SUBDIR " 1D

160 BLOCKS FREE.

163

MOD
Token: $NN

Format: MOD(dividend, divisor)

Returns: The remainder of a division operation.

Remarks: In other programming languages such as C, this function is implemented
as an operator (%). In BASIC 65 it is implemented as a function.

Example: Using MOD:

FOR I = 0 TO 8: PRINT MOD(I,4);: NEXT I

0 1 2 3 0 1 2 3 0

164

MONITOR
Token: $FA

Format: MONITOR

Usage: Invokes the machine language monitor.

Remarks: Using the MONITOR requires knowledge of the CSG4510 / 6502 /
6510 CPU, the assembly language they use, and their architectures.
More information on the MONITOR is available in the MEGA65 Book,
Machine Language Monitor (Appendix N).

To exit the monitor press X.

Help text can be displayed with either ? or H.

Example: Using MONITOR

MONITOR

165

MOUNT
Token: $FE $49

Format: MOUNT filename [,U unit]

Usage: Mounts a floppy image file of type D81 from SD-Card to unit 8 (default)
or unit 9.

If no argument is given, MOUNT assigns the real floppy drive of the
MEGA65 to unit 8.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: MOUNT can be used either in direct mode or in a program. It searches
the file on the SD-card and mounts it, as requested, on unit 8 or 9. After
mounting the floppy image can be used as usual with all DOS commands.

Examples: Using MOUNT

MOUNT "APOCALYPSE.D81" ;REM MOUNT IMAGE TO UNIT 8

MOUNT "BASIC.D81",U9 :REM MOUNT IMAGE TO UNIT 9

MOUNT (FI$),U(UN%) :REM MOUNT WITH VARIABLE ARGUMENTS

MOUNT :REM SELECT REAL FLOPPY DRIVE

166

MOUSE
Token: $FE $3E

Format: MOUSE ON [{, port, sprite, hotspot, pos}]
MOUSE OFF

Usage: Enables the mouse driver and connects the mouse at the specified port
with the mouse pointer sprite.

port mouse port 1 or 2 (default 2).

sprite sprite number for mouse pointer (default 0).

hostpot location of the ”hot spot” that determines the position and click
target (x,y) (default 0,0).

pos initial mouse position (x,y). If not specified, uses the last known po-
sition of the sprite.

MOUSE OFF disables the mouse driver and hides the associated sprite.

Remarks: The ”hot spot” of the mouse specifies where in the mouse sprite image
is considered the click target, such as the top of an arrow or the center
of a target reticle. The hot spot is always kept within the screen border.
The default hotspot is 0,0, representing the top left corner of the sprite.

When the system boots, sprite 0 is initialised to a picture of a mouse
pointer, with the hot spot at 0,0.

Use RMOUSE to test the location and button status of the mouse. This
returns the coordinates of the top-left corner of the sprite, not the coor-
dinates of the hot spot. To get the coordinates of the hot spot, add the
hot spot location to the sprite coordinates.

pos can be an absolute coordinate, or a relative coordinate to the cur-
rent mouse position, similar to MOVSPR.

Examples: Using MOUSE:

REM LOAD DATA INTO SPRITE #0 BEFORE USING IT

MOUSE ON, 1 :REM ENABLE MOUSE WITH SPRITE #0

MOUSE OFF :REM DISABLE MOUSE

MOUSE ON,1,0,2,4 :REM SET THE HOT SPOT TO (2,4)

RMOUSE X,Y,B :REM FETCH MOUSE SPRITE COORDINATES

X=X+2 : Y=Y+4 :REM CALCULATE THE COORDINATES OF THE HOT SPOT

REM SET THE INITIAL POSITION TO X=300 Y=75

MOUSE ON,1,0,0,0,300,75

167

MOVSPR
Token: $FE $06

Format: MOVSPR number, position

Usage: Moves a sprite to a location on screen.

Each position argument consists of two 16-bit values, which specify ei-
ther an absolute coordinate, a relative coordinate, an angle, or a speed.
The value type is determined by a prefix:

• +value relative coordinate: positive offset.

• -value relative coordinate: negative offset.

• #value speed.

If no prefix is given, the absolute coordinate or angle is used.

Therefore, the position argument can be used to either:

• set the sprite to an absolute position on screen.

• specify a displacement relative from the current position.

• trigger a relative movement from a specified position.

• describe movement with an angle and speed starting from the cur-
rent position.

MOVSPR number, position is used to set the sprite immediately to the
position or, in the case of an angle#speed argument, describe its further
movement.

Format: MOVSPR number, start-position TO end-position, speed

Usage: Places the sprite at the start position, defines the destination position,
and the speed of movement.

The sprite is placed at the start position, and will move in a straight line
to the destination at the given speed. Coordinates must be absolute or
relative. The movement is controlled by the BASIC interrupt handler and
happens concurrently with the program execution.

number sprite number (0 – 7).

position x,y | xrel,y | x,yrel | xrel,yrel | angle#speed.

x absolute screen coordinate pixel.

y absolute screen coordinate pixel.

xrel relative screen coordinate pixel.

yrel relative screen coordinate pixel.

168

angle compass direction for sprite movement [degrees]. 0: up, 90:
right, 180: down, 270: left, 45 upper right, etc.

speed speed of movement, configured as a floating point number in the
range of 0.0 – 127.0, in pixels per frame. PAL has 50 frames per second
whereas NTSC has 60 frames per second. A speed value of 1.0 will move
the sprite 50 pixels per second in PAL mode.

Example: Using MOVSPR:

100 CLR:SCNCLR:SPRITECLR

110 BLOAD "DEMOSPRITES1",B0,P1536

130 FORI=0TO7: C=I+1:SP=0.07*(I+1)

140 MOVSPRI, 160,120

145 MOVSPRI,45*I#SP

150 SPRITEI,1,C,,0,0

160 NEXT

170 SLEEP 3

180 FORI=0TO7:MOVSPR I,0#0:NEXT

169

NEW
Token: $A2

Format: NEW
NEW RESTORE

Usage: Erases the BASIC program in memory, and resets all BASIC parameters
to their default values.

Since NEW resets parameters and pointers, (but does not overwrite the
address range of a BASIC program that was in memory), it is possible to
recover the program. If there were no LOAD operations, or editing per-
formed after NEW, the program can be restored with the NEW RESTORE.

Examples: Using NEW:

NEW :REM RESET BASIC

NEW RESTORE :REM TRY TO RECOVER NEW'ED PROGRAM

170

NEXT
Token: $82

Format: FOR index = start TO end [STEP step] ... NEXT [index]

Usage: Marks the end of the BASIC loop associated with the given index variable.
When a BASIC loop is declared with FOR, it must end with NEXT.

The index variable may be incremented or decremented by a constant
value step on each iteration. The default is to increment the variable by
1. The index variable must be a real variable.

start value to initialise the index with.

end is checked at the end of an iteration, and determines whether an-
other iteration will be performed, or if the loop will exit.

step defines the change applied to to the index variable at the end of
every iteration. Positive step values increment it, while negative values
decrement it. It defaults to 1.0 if not specified.

Remarks: The index variable after NEXT is optional. If it is omitted, the variable for
the current loop is assumed. Several consecutive NEXT statements may
be combined by specifying the indexes in a comma separated list. The
statements NEXT I:NEXT J:NEXT K and NEXT I,J,K are equivalent.

Example: Using NEXT

10 FOR D=0 TO 360 STEP 30

20 R = D * ~ / 180

30 PRINT D;R;SIN(R);COS(R);TAN(R)

40 NEXT D

10 DIM M(20,20)

20 FOR I=0 TO 20

30 FOR J=I TO 20

40 M(I,J) = I + 100 * J

50 NEXT J,I

171

NOT
Token: $A8

Format: NOT operand

Usage: Performs a bit-wise logical NOT operation on a 16-bit value.

Integer operands are used as they are, whereas real operands are con-
verted to a signed 16-bit integer (losing precision). Logical operands
are converted to a 16-bit integer, using $FFFF (decimal -1) for TRUE,
and $0000 (decimal 0) for FALSE.

Expression Result
NOT 0 1

NOT 1 0

Remarks: The result is of type integer.

Examples: Using NOT

PRINT NOT 3

-4

PRINT NOT 64

-65

In most cases, NOT is used in IF statements.

OK = C < 256 AND C >= 0

IF (NOT OK) THEN PRINT "NOT A BYTE VALUE"

172

OFF
Token: $FE $24

Format: keyword OFF

Usage: OFF is a secondary keyword used in combination with primary keywords,
such as KEY and MOUSE.

Remarks: OFF cannot be used on its own.

Examples: Using OFF

KEY OFF :REM DISABLE FUNCTION KEY STRINGS

MOUSE OFF :REM DISABLE MOUSE DRIVER

173

ON
Token: $91

Format: ON expression GOSUB line number [, line number ...]
ON expression GOTO line number [, line number ...]
keyword ON

Usage: Performs GOSUB or GOTO to a line number selected by a number ex-
pression.

Depending on the result of the expression, the target for GOSUB and
GOTO is chosen from the table of line addresses at the end of the state-
ment.

When used as a secondary keyword, ON is used in combination with pri-
mary keywords, such as KEY and MOUSE.

expression is a positive numeric value. Real values are converted to
integer (losing precision). Logical operands are converted to a 16-bit
integer, using $FFFF (decimal -1) for TRUE, and $0000 (decimal 0) for
FALSE.

Remarks: Negative values for expression will stop the program with an error mes-
sage. The line number list specifies the targets for values of 1, 2, 3,
etc.
An expression result of zero, or a result that is greater than the number of
target lines will not do anything, and the program will continue execution
with the next statement.

174

Example: Using ON

20 KEY ON :REM ENABLE FUNCTION KEY STRINGS

30 MOUSE ON :REM ENABLE MOUSE DRIVER

40 N = JOY(1):IF N AND 128 THEN PRINT "FIRE! ";

60 REM N NE E SE S SW W NW

70 ON N AND 15 GOSUB 100,200,300,400,500,600,700,800

80 GOTO 40

100 PRINT "GO NORTH" :RETURN

200 PRINT "GO NORTHEAST":RETURN

300 PRINT "GO EAST" :RETURN

400 PRINT "GO SOUTHEAST":RETURN

500 PRINT "GO SOUTH" :RETURN

600 PRINT "GO SOUTHWEST":RETURN

700 PRINT "GO WEST" :RETURN

800 PRINT "GO NORTHWEST":RETURN

175

OPEN
Token: $9F

Format: OPEN channel, first address [, secondary address [, filename]]

Usage: Opens an input/output channel for a device.

channel number, where:

• 1 <= channel <= 127 line terminator is CR.

• 128 <= channel <= 255 line terminator is CR LF.

first address device number. For IEC devices the unit number is the
primary address. Following primary address values are possible:

Unit Device
0 Keyboard
1 System Default
2 RS232 Serial Connection
3 Screen

4 – 7 IEC Printer and Plotter
8 – 31 IEC Disk Drives

The secondary address has some reserved values for IEC disk units, 0:
load, 1: save, 15: command channel. The values 2 – 14 may be used for
disk files.

filename is either a quoted string, e.g. "DATA" or a string expression. The
syntax is different to DOPEN#, since the filename for OPEN includes all
file attributes, for example: "0:DATA,S,W".

Remarks: For IEC disk units the usage of DOPEN# is recommended.

If the first character of the filename is an at sign ’@’, it is interpreted as a
”save and replace” operation. It is not recommended to use this option
on 1541 and 1571 drives, as they contain a ”save and replace bug” in
their DOS.

Example: Using OPEN

OPEN 4,4 :REM OPEN PRINTER

CMD 4 :REM REDIRECT STANDARD OUTPUT TO 4

LIST :REM PRINT LISTING ON PRINTER DEVICE 4

OPEN 3,8,3,"0:USER FILE,U"

OPEN 2,9,2,"0:DATA,S,W"

176

OR
Token: $B0

Format: operand OR operand

Usage: Performs a bit-wise logical OR operation on two 16-bit values.

Integer operands are used as they are. Real operands are converted
to a signed 16-bit integer (losing precision). Logical operands are con-
verted to a 16-bit integer using $FFFF (decimal -1) for TRUE, and $0000
(decimal 0), for FALSE.

Expression Result
0 OR 0 0

0 OR 1 1

1 OR 0 1

1 OR 1 1

Remarks: The result is of type integer. If the result is used in a logical context,
the value of 0 is regarded as FALSE, and all other non-zero values are
regarded as TRUE.

Example: Using OR

PRINT 1 OR 3

3

PRINT 128 OR 64

192

In most cases, OR is used in IF statements.

IF (C < 0 OR C > 255) THEN PRINT "NOT A BYTE VALUE"

177

PAINT
Token: $DF

Format: PAINT x, y, mode [, region border colour]

Usage: Bitmap graphics: performs a flood fill of an enclosed graphics area using
the current pen colour.

x, y is a coordinate pair, which must lie inside the area to be painted.

mode specifies the paint mode:

• 0 The colour of pixel (x,y) defines the colour, which is replaced by
the pen colour.

• 1 The region border colour defines the region to be painted with
the pen colour.

• 2 Paint the region connected to pixel (x,y).

region border colour defines the colour index for mode 1.

Example: Using PAINT

10 SCREEN 320,200,2 :REM OPEN SCREEN

20 PALETTE 0,1,10,15,10 :REM COLOUR 1 TO LIGHT GREEN

30 PEN 1 :REM SET DRAWING PEN (PEN 0) TO LIGHT GREEN (1)

40 LINE 160,0,240,100 :REM 1ST. LINE

50 LINE 240,100,80,100 :REM 2ND. LINE

60 LINE 80,100,160,0 :REM 3RD. LINE

70 PAINT 160,10 :REM FILL TRIANGLE WITH PEN COLOUR

80 GETKEY A& :REM WAIT FOR KEY

90 SCREEN CLOSE :REM END GRAPHICS

178

PALETTE
Token: $FE $34

Format: PALETTE screen, colour, red, green, blue
PALETTE COLOR colour, red, green, blue
PALETTE RESTORE

Usage: PALETTE can be used to change an entry of the system colour palette,
or the palette of a screen.
PALETTE RESTORE resets the system palette to the default values.

screen screen number (0 – 3).

COLOR keyword for changing system palette.

colour index to palette entry (0 – 255). PALETTE can define colours
beyond the default system palette entries 0 – 31.

red red intensity (0 – 15).

green green intensity (0 – 15).

blue blue intensity (0 – 15).

Example: Using PALETTE

10 REM CHANGE SYSTEM COLOUR INDEX

20 REM --- INDEX 9 (BROWN) TO (DARK BLUE)

30 PALETTE COLOR 9,0,0,7

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 1,0,0,2 :REM 320 X 200

30 SCREEN OPEN 1 :REM OPEN

40 SCREEN SET 1,1 :REM MAKE SCREEN ACTIVE

50 PALETTE 1,0, 0, 0, 0 :REM 0 = BLACK

60 PALETTE 1,1, 15, 0, 0 :REM 1 = RED

70 PALETTE 1,2, 0, 0,15 :REM 2 = BLUE

80 PALETTE 1,3, 0,15, 0 :REM 3 = GREEN

90 PEN 2 :REM SET DRAWING PEN (PEN 0) TO BLUE (2)

100 LINE 160,0,240,100 :REM 1ST. LINE

110 LINE 240,100,80,100 :REM 2ND. LINE

120 LINE 80,100,160,0 :REM 3RD. LINE

130 PAINT 160,10,0,2 :REM FILL TRIANGLE WITH BLUE (2)

140 GETKEY K$:REM WAIT FOR KEY

150 SCREEN CLOSE 1 :REM END GRAPHICS

179

PASTE
Token: $E3

Format: PASTE x, y, width, height

Usage: Bitmap graphics: pastes the content of the CUT / GCOPY buffer onto
the screen. The arguments upper left position x, y and the width and
height specify the paste position on the screen.

Remarks: The size of the rectangle is limited by the 1K size of the buffer. The
memory requirement for region is width * height * number of bitplanes /
8. It must not equal or exceed 1024 byte. For a 4-bitplane screen for
example, a 45 x 45 region needs 1012.5 byte.

Example: Using PASTE

10 SCREEN 320,200,2

20 BOX 60,60,300,180,1 :REM DRAW A WHITE BOX

30 PEN 2 :REM SELECT RED PEN

40 CUT 140,80,40,40 :REM CUT OUT A 40 * 40 REGION

50 PASTE 10,10,40,40 :REM PASTE IT TO NEW POSITION

60 GETKEY A$:REM WAIT FOR KEYPRESS

70 SCREEN CLOSE

180

PEEK
Token: $C2

Format: PEEK(address)

Returns: The byte value stored in memory at address, as an unsigned 8-bit num-
ber.

If the address is in the range of $0000 to $FFFF (0 – 65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

Remarks: Banks 0 – 127 give access to RAM or ROM banks. Banks greater than
127 are used to access I/O, and the underlying system hardware such
as the VIC, SID, FDC, etc.

Example: Using PEEK

10 BANK 128 :REM SELECT SYSTEM BANK

20 L = PEEK($02F8) :REM USR JUMP TARGET LOW

30 H = PEEK($02F9) :REM USR JUMP TARGET HIGH

40 T = L + 256 * H :REM 16-BIT JUMP ADDRESS

50 PRINT "USR FUNCTION CALLS ADDRESS";T

181

PEN
Token: $FE $33

Format: PEN [pen,] colour

Usage: Bitmap graphics: sets the colour of the graphic pen for the current
screen.

pen pen number (0 – 2):

• 0 drawing pen (default, if only single parameter provided).

• 1 off bits in jam2 mode.

• 2 currently unused.

colour palette index, from the palette of the current screen

See appendix 6 on page 297 for the list of colours in the default system
palette.

Remarks: The colour selected by PEN will be used by all graphic/drawing com-
mands that follow it. If you intend to set the drawing pen 0 to a colour,
you can omit the first parameter, and only provide the colour parameter.

Example: Using PEN

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 1,0,0,2 :REM 320 X 200

30 SCREEN OPEN 1 :REM OPEN

40 SCREEN SET 1,1 :REM MAKE SCREEN ACTIVE

50 PALETTE 1,0, 0, 0, 0 :REM 0 = BLACK

60 PALETTE 1,1, 15, 0, 0 :REM 1 = RED

70 PALETTE 1,2, 0, 0,15 :REM 2 = BLUE

80 PALETTE 1,3, 0,15, 0 :REM 3 = GREEN

90 PEN 1 :REM SET DRAWING PEN (PEN 0) TO RED (1)

100 LINE 160,0,240,100 :REM DRAW RED LINE

110 PEN 2 :REM SET DRAWING PEN (PEN 0) TO BLUE (2)

120 LINE 240,100,80,100 :REM DRAW BLUE LINE

130 PEN 3 :REM SET DRAWING PEN (PEN 0) TO GREEN (3)

140 LINE 80,100,160,0 :REM DRAW GREEN LINE

150 GETKEY K$:REM WAIT FOR KEY

160 SCREEN CLOSE 1 :REM END GRAPHICS

182

PIXEL
Token: $CE $0C

Format: PIXEL(x, y)

Returns: Bitmap graphics: the colour of a pixel at the given position.

x absolute screen coordinate.

y absolute screen coordinate.

183

PLAY
Token: $FE $04

Format: PLAY [{string1, string2, string3, string4, string5, string6}]

Usage: Starts playing a sequence of musical notes, or stops a currently playing
sequence.

PLAY without any arguments will cause all voices to be silenced, and all
of the music system’s variables to be reset (such as TEMPO).

PLAY accepts up to six comma-separated string arguments, where each
string describes the sequence of notes and directives to be played on
a specific voice on the two available SID chips, allowing for up to 6-
channel polyphony.

PLAY uses SID1 (for voices 1 to 3) and SID3 (for voices 4 to 6) of the
4 SID chips of the system. By default, SID1 and SID2 are slightly right-
biased and SID3 and SID4 are slightly left-biased in the stereo mix.

PLAY " CEG "

PLAY " C " ," E " ," G "

Within a PLAY string, a musical note is a character (A, B, C, D, E, F, or G),
which may be preceded by an optional modifier.

Possible modifiers are:
Character Effect

Sharp
$ Flat
. Dotted
W Whole Note
H Half Note
Q Quarter Note
I Eighth Note
S Sixteenth Note
R Pause (rest)

Notice that the dot (.) modifier appears before the note name, not after
it as in traditional sheet music.

Directives consist of a letter, followed by a digit. Directives apply to all
future notes, until the parameter is changed by another directive.

184

Char-
acter

Directive Argument Range

O Octave 0 – 6
T Instrument Envelope 0 – 9
U Volume 0 – 9
X Filter 0 – 1
M Modulation 0 – 9
P Portamento 0 – 9
L Loop N/A

An octave is a range of notes from C to B. The default octave is 4, rep-
resenting the “middle” octave.

Instrument envelopes describe the nature of the sound. See ENVELOPE
for a list of default envelope styles, and information on how to adjust the
ten envelopes.

The modulation directive adds a pitch-based vibrato your note by the
magnitude you specify (1 – 9). A value of 0 disables it.

Similarly, the portamento directive slides between consecutive notes at
the speed you specify (1 – 9). A value of 0 disables it. Note that the
gate-off behaviour of notes is disabled while portamento is enabled. To
re-enable the gate-off behavior, you must disable portamento (P0).

If a string ends with the L directive, the pattern loops back to the begin-
ning of the string upon completion.

You can omit a string for a given voice to allow an already playing pattern
in that voice to continue, using empty arguments:

PLAY "O4EDCDEEERL",,,"O2CGEGCGEGL"

An example using voice 2 and voice 5:

PLAY ,"O5T2IGAGFEDCEGO6.QCL",,,"O3T2.QG.B O4ICO3GE.QCL"

RPLAY(voice) tests whether music is playing on the given voice, and re-
turns 1 if it is playing or 0 if it is not.

One caveat to be aware of is that BASIC strings have a maximum length
of 255 bytes. If your melody needs to exceed this length, consider break-
ing up your melody into several strings, then use RPLAY(voice) to assess
when your first string has finished and then play the next string.

Instrument envelope slots may be modified by using the ENVELOPE state-
ment. The default settings for the envelopes are on page 100.

185

Remarks: The PLAY statement makes use of an interrupt driven routine that starts
parsing the string and playing the melody. Program execution continues
with the next statement, and will not block until the melody has finished.
This is different to the Commodore 128, which stops program execution
during playback.

The 6 voice channels used by the PLAY command (on SID1+SID3) are
distinct to the 6 channels used by the SOUND command (on SID2+SID4).
Sound effects will not interrupt music, and vice versa.

Example: Using PLAY

5 REM *** SIMPLE LOOPING EXAMPLE ***

10 ENVELOPE 9,10,5,10,5,0,300

20 VOL 8,8

30 TEMPO 30

40 PLAY "O5T9HCIDCDEHCG IGAGFEFDEWCL", "O2T0QCGEGCGEG DBGB CGEGL"

5 REM *** MODULATION + PORTAMENTO EXAMPLE ***

10 TEMPO 20

20 M$ = "M5 T2O5P0QD P5FP0RP5QG .AI#AQA HGQE.C IDQE HFQD .DI#CQD HEQ#CQO4HA"

30 M$ = M$ + "O5QDHFQG.AI#AQA HGQE.C IDQEFED#CO4BO5#C DO4AFD P0R L"

40 B$ = "T0QRO2H.D.F.CO1.A.#A.G.A QAIO2AGFE H.D.F.CO1.A.#A.AO2 .D DL"

50 PLAY M$,B$

186

POINTER
Token: $CE $0A

Format: POINTER(variable)

Returns: The current address of a variable or an array element as a 32-bit pointer.

For string variables, it is the address of the string descriptor, not the string
itself. The string descriptor consists of three bytes: length, string address
low, string address high. The string address is an offset in bank 1.

For number-type scalar variables, it is the address of the value. The for-
mat depends on the type. A byte variable (A&) is one byte, in a “two’s
complement” signed integer format. An integer variable (A%) is two bytes,
with the least significant byte first. A real variable (A) is five bytes, in a
compact floating point number format.

To get the address of an array, use POINTER with the first element of the
array (index 0 in each dimension). Array elements are stored consecu-
tively, in the format of the scalar record, with the left-most index using
the shortest stride. For example, an array dimensioned as DIM A%(3,2) starts
at address POINTER(A%(0,0)), has two-byte records, and is ordered as:

(0,0) (1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) ...

Remarks: The address values of arrays and their elements are constant while the
program is executing.
However, the addresses of strings (not their descriptors) may change at
any time due to “garbage collection.”

Example: Using POINTER

10 BANK 0 :REM SCALARS ARE IN BANK 0

20 H$="HELLO" :REM ASSIGN STRING TO H$

30 P=POINTER(H$) :REM GET DESCRIPTOR ADDRESS

40 PRINT "DESCRIPTOR AT: $";HEX$(P)

50 L=PEEK(P):SP=WPEEK(P+1) :REM LENGTH & STRING POINTER

60 PRINT "LENGTH = ";L :REM PRINT LENGTH

70 BANK 1 :REM STRINGS ARE IN BANK 1

80 FOR I%=0 TOL-1:PRINT PEEK(SP+I%);:NEXT:PRINT

90 FOR I%=0 TOL-1:PRINT CHR$(PEEK(SP+I%));:NEXT:PRINT

RUN

DESCRIPTOR AT: $FD75

LENGTH = 5

72 69 76 76 79

HELLO

187

POKE
Token: $97

Format: POKE address, value [, value ...]

Returns: Writes one or more bytes into memory or memory mapped I/O, starting
at address.

If the address is in the range of $0000 to $FFFF (0 – 65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

If value is in the range of 0 – 255, this is poked into memory, otherwise
the low byte of value is used. So a command like POKE AD,V AND 255 can be
written as POKE AD,V because POKE uses the low byte anyway.

Remarks: The address is incremented for each data byte, so a memory range can
be written to with a single POKE.

Banks greater than 127 are used to access I/O, and the underlying sys-
tem hardware such as the VIC, SID, FDC, etc.

Example: Using POKE

10 BANK 128 :REM SELECT SYSTEM BANK

20 POKE $02F8,0,24 :REM SET USR VECTOR TO $1800

188

POLYGON
Token: $FE $2F

Format: POLYGON x, y, xrad, yrad, sides [{, drawsides, subtend, angle, solid}]

Usage: Bitmap graphics: draws a regular n-sided polygon. The polygon is drawn
using the current drawing context set with SCREEN, PALETTE, and PEN.

x,y centre coordinates.

xrad,yrad radius in x- and y-direction.

sides number of polygon sides.

drawsides sides to draw.

subtend draw line from centre to start (1).

angle start angle.

solid fill (1) or outline (0).

Remarks: A regular polygon is both isogonal and isotoxal, meaning all sides and
angles are alike.

Example: Using POLYGON

100 SCREEN 320,200,1 :REM OPEN 320 x 200 SCREEN

110 POLYGON 160,100,40,40,6 :REM DRAW HONEYCOMB

120 GETKEY A$:REM WAIT FOR KEY

130 SCREEN CLOSE :REM CLOSE GRAPHICS SCREEN

Results in:

189

POS
Token: $B9

Format: POS(dummy)

Returns: The cursor column relative to the currently used window.

dummy a numeric value, which is ignored.

Remarks: POS gives the column position for the screen cursor. It will not work for
redirected output.

Example: Using POS

10 IF POS(0) > 72 THEN PRINT :REM INSERT RETURN

190

POT
Token: $CE $02

Format: POT(paddle)

Returns: The position of a paddle peripheral.

paddle paddle number (1 – 4).

The low byte of the return value is the paddle value, with 0 at the clock-
wise limit and 255 at the anticlockwise limit.

A value greater than 255 indicates that the fire button is also being
pressed.

Remarks: Analogue paddles are noisy and inexact. The range may be less than 0
– 255 and there could be some jitter in the values returned from POT.

Paddles made for Atari game consoles return different values from pad-
dles made for Commodore computers. Commodore paddles provide
more accurate values in the 0 – 255 range.

Example: Using POT

10 X = POT(1) : REM READ PADDLE #1

20 B = X > 255 : REM TRUE (-1) IF FIRE BUTTON IS PRESSED

30 V = X AND 255 : REM PADDLE #1 VALUE

191

PRINT
Token: $99

Format: PRINT arguments

Usage: Prints a series of values formatted to the current output stream, typically
the screen.

Values are formatted based on their type. For more control over format-
ting, see PRINT USING.

The following expressions and characters can appear in the argument
list:

• numeric the printout starts with a space for positive and zero val-
ues, or a minus sign for negative values. Integer values are printed
with the necessary number of digits. Real values are printed in ei-
ther fixed point form (typically 9 digits), or scientific form if the value
is outside the range of 0.01 to 999999999.

• string the string may consist of printable characters and control
codes. Printable characters are printed at the cursor position. Con-
trol codes are executed.

• ; (semicolon) separates arguments of the list. It does not print any
characters. A semicolon at the end of the argument list suppresses
the automatic return (carriage return) character.

• , (comma) moves the cursor to the next tab position.

Remarks: The SPC and TAB functions may be used in the argument list for posi-
tioning.

CMD can be used to redirect printed characters to a device other than
the screen.

Example: Using PRINT

10 FOR I=1 TO 10 : REM START LOOP

20 PRINT I,I*I,SQR(I)

30 NEXT

192

PRINT#
Token: $98

Format: PRINT# channel, arguments

Usage: Prints a series of values formatted to the device assigned to channel.

Values are formatted based on their type. For more control over format-
ting, see PRINT# USING.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN.

The following argument types are evaluated:

• numeric the printout starts with a space for positive and zero val-
ues, or a minus sign for negative values. Integer values are printed
with the necessary number of digits. Real values are printed in ei-
ther fixed point form (typically 9 digits), or scientific form if the value
is outside the range of 0.01 to 999999999.

• stringmay consist of printable characters and control codes. Print-
able characters are printed at the cursor position, while control
codes are executed.

• ; (semicolon) separates arguments of the list. It does not print any
characters. A semicolon at the end of the argument list suppresses
the automatic return (carriage return) character.

• , (comma) moves the cursor to the next tab position.

Remarks: The SPC and TAB functions are not suitable for devices other than the
screen.

Example: Using PRINT# to write a file to drive 8:

10 DOPEN#2,"TABLE",W,U8

20 FOR I=1 TO 10 : REM START LOOP

30 PRINT#2,I,I*I,SQR(I)

40 NEXT

50 DCLOSE#2

You can confirm that the file ’TABLE’ has been written by typing DIR "TA*",
and then view the contents of the file by typing TYPE "TABLE".

193

PRINT USING
Token: $98 $FB or $99 $FB

Format: PRINT[# channel,] USING format; argument

Usage: Prints a series of values formatted using a pattern to the current output
stream (typically the screen) or an output channel.

The argument can be either a string or a numeric value. The format of
the resulting output is directed by the format string.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN. If no channel is specified, the output goes
to the screen.

format string variable or a string constant which defines the rules for
formatting. When using a number as the argument, formatting can be
done in either CBM style, providing a pattern such as ###.## or in C style
using a <width.precision> specifier, such as %3D %7.2F %4X .

argument the number to be formatted. If the argument does not fit into
the format e.g. trying to print a 4 digit variable into a series of three
hashes (###), asterisks will be used instead.

Remarks: The format string is applied for one argument only, but it is possible to
append more with USING format;argument sequences.

argument may consist of printable characters and control codes. Print-
able characters are printed to the cursor position, while control codes
are executed. The number of # characters sets the width of the output. If
the first character of the format string is an equals ’=’ sign, the argument
string is centered. If the first character of the format string is a greater
than ’>’ sign, the argument string is right justified.

194

Examples: Using PRINT# USING

PRINT USING "##.##";~, USING " [%6.4F] ";SQR(2)

3.14 [1.4142]

PRINT USING " < # # # > ";12*31

< 3 7 2 >

PRINT USING "###"; "ABCDE"

ABC

PRINT USING ">###"; "ABCDE"

CDE

PRINT USING "ADDRESS:$%4X";65000

ADDRESS:$FDE8

A$="###,###,###.#":PRINT USING A$;1E8/3

33,333,333.3

195

RCOLOR
Token: $CD

Format: RCOLOR(colour source)

Returns: The current colour index for the selected colour source.

Colour sources are:

• 0 background colour (VIC $D021).

• 1 text colour ($F1).

• 2 highlight colour ($2D8).

• 3 border colour (VIC $D020).

Example: Using RCOLOR

10 C = RCOLOR(3) : REM C = colour index of border colour

196

RCURSOR
Token: $FE $42

Format: RCURSOR {colvar, rowvar}

Usage: Reads the current cursor column and row into variables.

Remarks: The row and column values start at zero, where the left-most column is
zero, and the top row is zero.

Example: Using RCURSOR

100 CURSOR ON,20,10

110 PRINT "[HERE]";

120 RCURSOR X,Y

130 PRINT " COL:";X;" ROW:";Y

RUN

[HERE] COL: 26 ROW: 10

197

READ
Token: $87

Format: READ variable [, variable ...]

Usage: Reads values from DATA statements into variables.

variable list Any legal variables.

All types of constants (integer, real, and strings) can be read, but not ex-
pressions. Items are separated by commas. Strings containing commas,
colons or spaces must be put in quotes.

RUN initialises the data pointer to the first item of the first DATA state-
ment and advances it for every read item. It is the programmer’s re-
sponsibility that the type of the constant and the variable in the READ
statement match. Empty items with no constant between commas are
allowed and will be interpreted as zero for numeric variables and an
empty string for string variables.

RESTORE may be used to set the data pointer to a specific line for sub-
sequent readings.

Remarks: It is good programming practice to put large amounts of DATA state-
ments at the end of the program, so they don’t slow down the search for
line numbers afterGOTO, and other statements with line number targets.

Example: Using READ

10 READ NA$, VE

20 READ N%:FOR I=2 TO N%:READ GL(I):NEXT I

30 PRINT "PROGRAM:";NA$;" VERSION:";VE

40 PRINT "N-POINT GAUSS-LEGENDRE FACTORS E1":

50 FOR I=2 TO N%:PRINT I;GL(I):NEXT I

30 STOP

80 DATA "MEGA65",1.1

90 DATA 5,0.5120,0.3573,0.2760,0.2252

198

RECORD
Token: $FE $12

Format: RECORD# channel, record [, byte]

Usage: Positions the read/write pointer of a relative file.

channel number, which was given to a previous call of commands such
as DOPEN, or OPEN.

record target record (1 – 65535).

byte byte position in record.

RECORD can only be used for files of type REL, which are relative files
capable of direct access.

RECORD positions the file pointer to the specified record number. If this
record number does not exist and there is enough space on the disk which
RECORD is writing to, the file is expanded to the requested record count
by adding empty records. When this occurs, the disk status will give the
message RECORD NOT PRESENT, but this is not an error!

After a call of INPUT# or PRINT#, the file pointer will proceed to the next
record position.

Remarks: The Commodore disk drives have a bug in their DOS, which can destroy
data by using relative files. A recommended workaround is to use the
command RECORD twice, before and after the I/O operation.

Example: Using RECORD

199

100 DOPEN#2,"DATA BASE",L240 :REM OPEN OR CREATE

110 FOR I%=1 TO 20 :REM WRITE LOOP

120 PRINT#2,"RECORD #";I% :REM WRITE RECORD

130 NEXT I% :REM END LOOP

140 DCLOSE#2 :REM CLOSE FILE

150 :REM NOW TESTING

160 DOPEN#2,"DATA BASE",L240 :REM REOPEN

170 FOR I%=20 TO 2 STEP -2 :REM READ FILE BACKWARDS

180 RECORD#2,I% :REM POSITION TO RECORD

190 INPUT#2,A$:REM READ RECORD

200 PRINT A$;:IF I% AND 2 THEN PRINT

210 NEXT I% :REM LOOP

220 DCLOSE#2 :REM CLOSE FILE

RUN

RECORD # 20 RECORD # 18

RECORD # 16 RECORD # 14

RECORD # 12 RECORD # 10

RECORD # 8 RECORD # 6

RECORD # 4 RECORD # 2

200

REM
Token: $8F

Format: REM

Usage: Ignores all subsequent characters on a line of BASIC code, as a code
comment.

Example: Using REM

10 REM *** PROGRAM TITLE ***

20 N=1000 :REM NUMBER OF ITEMS

30 DIM NA$(N)

201

RENAME
Token: $F5

Format: RENAME old TO new [,D drive] [,U unit]

Usage: Renames a disk file.

old is either a quoted string, e.g. "DATA" or a string expression in brackets,
e.g. (FI$).

new is either a quoted string, e.g. "BACKUP" or a string expression in brack-
ets, e.g. (FS$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: RENAME is executed in the DOS of the disk drive. It can rename all reg-
ular file types (PRG, REL), SEQ, USR. The old file must exist, and the new
file must not exist. Only single files can be renamed, wildcard characters
such as ’*’ and ’?’ are not allowed. The file type cannot be changed.

Example: Using RENAME

RENAME "CODES" TO "BACKUP" :REM RENAME SINGLE FILE

202

RENUMBER
Token: $F8

Format: RENUMBER [{new, inc, range}]

Usage: Renumbers lines of a BASIC program.

new new starting line of the line range to renumber. The default value is
10.

inc increment to be used. The default value is 10.

range line range to renumber. The default values are from first to last
line.

RENUMBER executes in either space conserving mode or optimisation
mode. Optimisation mode removes space characters before line num-
bers, thereby reducing code size and decreasing execution time, while
the space conserving leaves spaces untouched. Optimisation mode is
triggered by typing the first argument, (the new starting number), adja-
cent to the keyword RENUMBER with no space in between.

RENUMBER changes all line numbers in the chosen range and also
changes all references in statements that useGOSUB,GOTO, RESTORE,
RUN, TRAP, etc.

RENUMBER can only be executed in direct mode. If it detects a problem
such as memory overflow, unresolved references or line number overflow
(more than than 64000 lines), it will stop with an error message and
leave the program unchanged.

RENUMBER may be called with 0 – 3 parameters. Unspecified parame-
ters use their default values.

Remarks: RENUMBER may need several minutes to execute for large programs.

RENUMBER can only be used in direct mode.

This command temporarily uses memory in banks 4 and 5, and may over-
write anything stored there.

Examples: Using RENUMBER

203

RENUMBER :REM SPACE CONSERVING, NUMBERS WILL BE 10,20,30,...

RENUMBER 100,5 :REM SPACE CONSERVING, NUMBERS WILL BE 100,105,110,115,...

RENUMBER601,1,500 :REM OPTIMISATION, RENUMBER STARTING AT 500 TO 601,602,...

RENUMBER 100,5,120-180 :REM SPACE CONSERVING RENUMBER LINES 120-180 TO 100,105,...

10 GOTO 20

20 GOTO 10

RENUMBER 100,10 :REM SPACE CONSERVING

100 GOTO 110

110 GOTO 100

RENUMBER100,10 :REM OPTIMISATION

100 GOTO110

110 GOTO100

204

RESTORE
Token: $8C

Format: RESTORE [line]

Usage: Sets the internal pointer for READ from DATA statements.

line new position for the pointer. The default is the first program line.

Remarks: The new pointer target line does not need to contain DATA statements.
Every READ will advance the pointer to the next DATA statement auto-
matically.

Example: Using RESTORE

10 DATA 3,1,4,1,5,9,2,6

20 DATA "MEGA65"

30 DATA 2,7,1,8,2,8,9,5

40 FOR I=1 TO 8:READ P:PRINT P:NEXT

50 RESTORE 30

60 FOR I=1 TO 8:READ P:PRINT P:NEXT

70 RESTORE 20

80 READ A$:PRINT A$

205

RESUME
Token: $D6

Format: RESUME [line | NEXT]

Usage: Resumes normal program execution in a TRAP routine, after handling an
error.

RESUME with no parameters attempts to re-execute the statement that
caused the error. The TRAP routine should have examined and corrected
the issue where the error occurred.

line line number to resume program execution at.

NEXT resumes execution following the statement that caused the error.
This could be the next statement on the same line (separated with a colon
’:’), or the statement on the next line.

Remarks: RESUME cannot be used in direct mode.

Example: Using RESUME

10 TRAP 100

20 FOR I=1 TO 100

30 PRINT EXP(I)

40 NEXT

50 PRINT "STOPPED FOR I =";I

60 END

100 PRINT ERR$(ER): RESUME 50

206

RETURN
Token: $8E

Format: RETURN

Usage: Returns control from a subroutine that was called with GOSUB or an
event handler declared with COLLISION.

The execution continues at the statement following the GOSUB call.

In the case of the COLLISION handler, the execution continues at the
statement where it left from to call the handler.

Example: Using RETURN

10 SCNCLR :REM CLEAR SCREEN

20 FOR I=1 TO 20 :REM DEFINE LOOP

30 GOSUB 100 :REM CALL SUBROUTINE

40 NEXT I :REM LOOP

50 END :REM END OF PROGRAM

100 CURSOR ON,I,I,0 :REM ACTIVATE AND POSITION CURSOR

110 PRINT "X"; :REM PRINT X

120 SLEEP 0.5 :REM WAIT 0.5 SECONDS

130 CURSOR OFF :REM SWITCH BLINKING CURSOR OFF

140 RETURN :REM RETURN TO CALLER

207

RGRAPHIC
Token: $CC

Format: RGRAPHIC(screen, parameter)

Returns: Bitmap graphics: the status of a given graphic screen parameter.

Parameter Description
0 Open (1), Closed (0), or Invalid (>1)
1 Width (0=320, 1=640)
2 Height (0=200, 1=400)
3 Depth (1 – 8 Bitplanes)
4 Bitplanes Used (Bitmask)
5 Bank 4 Blocks Used (Bitmask)
6 Bank 5 Blocks Used (Bitmask)
7 Drawscreen # (0 – 3)
8 Viewscreen # (0 – 3)
9 Drawmodes (Bitmask)

10 pattern type (bitmask)

Example: Using RGRAPHIC

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 0,1,0,4 :REM SCREEN 0:640 X 200 X 4

30 SCREEN OPEN 0 :REM OPEN

40 SCREEN SET 0,0 :REM DRAW = VIEW = 0

50 SCNCLR 0 :REM CLEAR

60 PEN 0,1 :REM SELECT COLOUR

70 LINE 0,0,639,199 :REM DRAW LINE

80 FOR I=0 TO 10:A(I)=RGRAPHIC(0,I) :NEXT

90 SCREEN CLOSE 0

100 FOR I=0 TO 6:PRINT I;A(I):NEXT :REM PRINT INFO

RUN

0 1

1 1

2 0

3 4

4 15

5 15

6 15

208

RIGHT$
Token: $C9

Format: RIGHT$(string, n)

Returns: A string containing the last n characters from string.

If the length of string is equal or less than n, the result string will be
identical to the argument string.

string a string expression.

n a numeric expression (0 – 255).

Remarks: Empty strings and zero lengths are legal values.

Example: Using RIGHT$:

PRINT RIGHT$("MEGA-65",2)

65

209

RMOUSE
Token: $FE $3F

Format: RMOUSE x variable, y variable, button variable

Usage: Reads mouse position and button status.

x variable numeric variable where the x-position will be stored.

y variable numeric variable where the y-position will be stored.

button variable numeric variable receiving button status.
left button sets bit 7, while right button sets bit 0.

Coordinates are reported to be compatible with sprite coordinates, lim-
ited to the visible screen inside the border. In the top-left corner, X=24
and Y=50.

Value Status
0 No Button
1 Right Button

128 Left Button
129 Both Buttons

RMOUSE places -1 into all variables if the mouse is not connected or
disabled.

Remarks: Active mice on both ports merge the results.

Example: Using RMOUSE:

10 MOUSE ON, 1, 1 :REM MOUSE ON PORT 1 WITH SPRITE 1

20 RMOUSE XP, YP, BU :REM READ MOUSE STATUS

30 IF XP < 0 THEN PRINT "NO MOUSE ON PORT 1":STOP

40 PRINT "MOUSE:";XP;YP;BU

50 MOUSE OFF :REM DISABLE MOUSE

210

RND
Token: $BB

Format: RND(type)

Returns: A pseudo-random number.

This is called a “pseudo-random” number as computers cannot gener-
ate numbers that are truly random. Pseudo-random numbers are derived
mathematically from another number called a “seed” that generates re-
producible sequences. type determines which seed is used:

• type = 0 use system clock.

• type < 0 use the value of type as seed.

• type > 0 derive a new random number from previous one.

Remarks: Seeded random number sequences produce the same sequence for
identical seeds.

The algorithm is initially seeded from the Real-Time Clock and other fac-
tors during boot, so RND(1) is unlikely to return the same sequence twice.
This is unlike the Commodore 64, which always used the same initial
seed. If RND() is ever called with a negative value, that value is used
as a new seed, and sequences generated by RND(1) become predictable.
Use RND(0) to re-seed with an unpredictable value.

Each call to RND(0) generates a new seed based on the system clock and
other factors. Calling RND(0) repeatedly tends to produce a better distri-
bution of values than on a Commodore 64 due to the precision of the
sources of the seed.

Example: Using RND:

10 DEF FNDI(X) = INT(RND(0)*6)+1 :REM DICE FUNCTION

20 FOR I=1 TO 10 :REM THROW 10 TIMES

30 PRINT I;FNDI(0) :REM PRINT DICE POINTS

40 NEXT

211

RPALETTE
Token: $CE $0D

Format: RPALETTE(screen, index, rgb)

Returns: The red, green, or blue value of a palette colour index.

screen screen number (0 – 3), or a negative value to select one of the
four system palettes: -1 for system palette 0 (the default system palette),
-2 for system palette 1, -3 for palette 2, or -4 for palette 3.

index palette colour index.

rgb (0: red, 1: green, 2:blue).

Example: Using RPALETTE

10 SCREEN 320,200,4 :REM DEFINE AND OPEN SCREEN

20 R = RPALETTE(0,3,0) :REM GET RED

30 G = RPALETTE(0,3,1) :REM GET GREEN

40 B = RPALETTE(0,3,2) :REM GET BLUE

50 SCREEN CLOSE :REM CLOSE SCREEN

60 PRINT "PALETTE INDEX 3 RGB =";R;G;B

RUN

PALETTE INDEX 3 RGB = 0 15 15

212

RPEN
Token: $D0

Format: RPEN(n)

Returns: The colour index of pen n.

n pen number (0 – 2), where:

• 0 draw pen

• 1 erase pen

• 2 outline pen

Example: Using RPEN

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 0,1,0,4 :REM SCREEN 0:640 X 200 X 4

30 SCREEN OPEN 0 :REM OPEN

40 SCREEN SET 0,0 :REM DRAW = VIEW = 0

50 SCNCLR 0 :REM CLEAR

60 PEN 0,1 :REM SELECT COLOUR

70 X = RPEN(0)

80 Y = RPEN(1)

90 C = RPEN(2)

100 SCREEN CLOSE 0

110 PRINT "DRAW PEN COLOUR = ";X

RUN

DRAW PEN COLOUR = 1

213

RPLAY
Token: $FE $0F

Format: RPLAY(voice)

Returns: Tests whether music is playing on the given voice channel.

voice the voice channel to assess, ranging from 1 to 6.

Returns 1 if music is playing on the channel, otherwise 0.

Example: Using RPLAY:

10 PLAY "O4ICDEFGABO5CR","O2QCGEGCO1GCR"

30 IF RPLAY(1) OR RPLAY(2) THEN GOTO 30: REM WAIT FOR END OF SONG

214

RREG
Token: $FE $09

Format: RREG [{areg, xreg, yreg, zreg, sreg}]

Usage: Reads the values that were in the CPU registers after a SYS call, into the
specified variables.

areg gets accumulator value.

xreg gets X register value.

yreg gets Y register value.

zreg gets Z register value.

sreg gets status register value.

Remarks: The register values after a SYS call are stored in system memory. This is
how RREG is able to retrieve them.

Example: Using RREG:

10 POKE $1800, $18, $8A, $65, $06, $60

20 REM CLC TXA ADC 06 RTS

30 SYS $1800, 77, 11 : REM A=77 X=11

40 RREG AC,X,Y,Z,S

50 PRINT "REGISTER:";AC;X;Y;Z;S

215

RSPCOLOR
Token: $CE $07

Format: RSPCOLOR(n)

Returns: The colour setting of a multi-colour sprite colour.

n sprite multi-colour number:

• 1 get multi-colour # 1.

• 2 get multi-colour # 2.

Remarks: Refer to SPRITE and SPRCOLOR for more information.

Example: Using RSPCOLOR:

10 SPRITE 1,1 :REM TURN SPRITE 1 ON

20 C1% = RSPCOLOR(1) :REM READ COLOUR #1

30 C2% = RSPCOLOR(2) :REM READ COLOUR #2

216

RSPEED
Token: $CE $0E

Format: RSPEED(n)

Returns: The current CPU clock in MHz.

n numeric dummy argument, which is ignored.

Remarks: RSPEED(n) will not return the correct value if POKE 0,65 has previously been
used to enable the highest speed (40MHz).

Refer to the SPEED command for more information.

Example: Using RSPEED:

10 X=RSPEED(0) :REM GET CLOCK

20 IF X=1 THEN PRINT "1 MHZ" :GOTO 50

30 IF X=3 THEN PRINT "3.5 MHZ" :GOTO 50

40 IF X=40 THEN PRINT "40 MHZ"

50 END

217

RSPPOS
Token: $CE $05

Format: RSPPOS(sprite, n)

Returns: A sprite’s position or speed.

sprite sprite number.

n sprite parameter to retrieve:

• 0 X position.

• 1 Y position.

• 2 speed.

Remarks: Refer to the MOVSPR and SPRITE commands for more information.

Example: Using RSPPOS:

10 SPRITE 1,1 :REM TURN SPRITE 1 ON

20 XP = RSPPOS(1,0) :REM GET X OF SPRITE 1

30 YP = RSPPOS(1,1) :REM GET Y OF SPRITE 1

30 SP = RSPPOS(1,2) :REM GET SPEED OF SPRITE 1

218

RSPRITE
Token: $CE $06

Format: RSPRITE(sprite, n)

Returns: A sprite parameter.

sprite sprite number (0 – 7).

n the sprite parameter to return (0 – 5):

• 0 turned on (0 or 1) A 0 means the sprite is off.

• 1 foreground colour (0 – 15).

• 2 background priority (0 or 1).

• 3 x-expanded (0 or 1). 0 means it’s not expanded.

• 4 y-expanded (0 or 1). 0 means it’s not expanded.

• 5 multi-colour (0 or 1). 0 means it’s not multi-colour.

Remarks: Refer to the MOVSPR and SPRITE commands for more information.

Example: Using RSPRITE:

10 SPRITE 1,1 :REM TURN SPRITE 1 ON

20 EN = RSPRITE(1,0) :REM SPRITE 1 ENABLED ?

30 FG = RSPRITE(1,1) :REM SPRITE 1 FOREGROUND COLOUR INDEX

40 BP = RSPRITE(1,2) :REM SPRITE 1 BACKGROUND PRIORITY

50 XE = RSPRITE(1,3) :REM SPRITE 1 X EXPANDED ?

60 YE = RSPRITE(1,4) :REM SPRITE 1 Y EXPANDED ?

70 MC = RSPRITE(1,5) :REM SPRITE 1 MULTI-COLOUR ?

219

RUN
Token: $8A

Format: RUN [line number]
RUN filename [,D drive] [,U unit] ↑ filename

Usage: Runs the BASIC program in memory, or loads and runs a program from
disk.

If a filename is given, the program file is loaded into memory and run,
otherwise the program that is currently in memory will be used instead.

The ↑ can be used as shortcut, if used in direct mode at the leftmost
column. It can be used to load and run a program from a dir listing by
moving the cursor to the row with the filename, typing the ↑ at the start
of the row and pressing return. Characters before and after the quoted
filename, will be ignored (like the PRG for example).

line number an existing line number of the program in memory to run
from.

filename either a quoted string, e.g. "PROG" or a string expression in brack-
ets, e.g. (PR$). The filetype must be PRG.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

RUN first resets all internal pointers to their default values. Therefore,
there will be no variables, arrays or strings defined. The run-time stack is
also reset, and the table of open files is cleared.

Remarks: To start or continue program execution without resetting everything, use
GOTO instead.

Examples: Using RUN

RUN "FLIGHTSIM" :REM LOAD AND RUN PROGRAM FLIGHTSIM

RUN 1000 :REM RUN PROGRAM IN MEMORY, START AT LINE# 1000

RUN :REM RUN PROGRAM IN MEMORY

220

RWINDOW
Token: $CE $09

Format: RWINDOW(n)

Returns: A parameter of the current text window.

n the screen parameter to retrieve:

• 0 width of current text window.

• 1 height of current text window.

• 2 number of columns on screen (40 or 80).

Remarks: Older versions of RWINDOW reported the width - 1 and the height - 1
for arguments 0 and 1.

Refer to the WINDOW command for more information.

Example: Using RWINDOW:

10 W = RWINDOW(2) :REM GET SCREEN WIDTH

20 IF W=80 THEN BEGIN :REM IS 80 COLUMNS MODE ACTIVE?

30 PRINT CHR$(27)+"X"; :REM YES, SWITCH TO 40COLUMNS

40 BEND

221

SAVE
Token: $94

Format: SAVE filename [, unit]
← filename [, unit]

Usage: Saves a BASIC program to a file of type PRG.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

The maximum length of the filename is 16 characters, not counting the
optional save and replace character ’@’ and the in-file drive definition. If
the first character of the filename is an at sign ’@’, it is interpreted as a
”save and replace” operation. It is not recommended to use this option
on 1541 and 1571 drives, as they contain a ”save and replace bug” in
their DOS. The filename may be preceded by the drive number definition
”0:” or ”1:”, which is only relevant for dual drive disk units.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: SAVE is obsolete, implemented only for backwards compatibility. DSAVE
should be used instead. The shortcut symbol ← is next to 1 . Can
only be used in direct mode.

Examples: Using SAVE

SAVE "ADVENTURE"

SAVE "ZORK-I",8

SAVE "1:DUNGEON",9

222

SAVEIFF
Token: $FE $44

Format: SAVEIFF filename [,D drive] [,U unit]

Usage: Bitmap graphics: saves the current graphics screen to a disk file in IFF
format.

The IFF (Interchange File Format) is supported by many different appli-
cations and operating systems. SAVEIFF saves the image, the palette
and resolution parameters.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$). The maximum length of the
filename is 16 characters. If the first character of the filename is an at
sign ’@’ it is interpreted as a ”save and replace” operation. It is not rec-
ommended to use this option on 1541 and 1571 drives, as they contain
a ”save and replace bug” in their DOS.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: Files saved with SAVEIFF can be loaded with LOADIFF. Tools are avail-
able to convert popular image formats to IFF. These tools are available
on several operating systems, such as Amiga OS, macOS, Linux, and Win-
dows. For example, ImageMagick is a free graphics package that in-
cludes a tool called convert, which can be used to create IFF files in
conjunction with the ppmtoilbm tool from the Netbpm package.

Example: Using SAVEIFF

10 SCREEN 320,200,2 :REM SCREEN #0 320 X 200 X 2

20 PEN 1 :REM DRAWING PEN COLOUR 1 (WHITE)

30 LINE 25,25,295,175 :REM DRAW LINE

40 SAVEIFF "LINE-EXAMPLE",U8 :REM SAVE CURRENT VIEW TO FILE

50 SCREEN CLOSE :REM CLOSE SCREEN AND RESTORE PALETTE

223

SCNCLR
Token: $E8

Format: SCNCLR [colour]

Usage: Clears a text window or bitmap graphics screen.

SCNCLR (with no arguments) clears the current text window. The default
window occupies the whole screen.

SCNCLR colour clears the graphic screen by filling it with the given
colour.

Example: Using SCNCLR:

1 REM SCREEN EXAMPLE 2

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 1,0,0,2 :REM SCREEN #1 320 X 200 X 2

30 SCREEN OPEN 1 :REM OPEN SCREEN 1

40 SCREEN SET 1,1 :REM USE SCREEN 1 FOR RENDERING AND VIEWING

50 SCREEN CLR 0 :REM CLEAR SCREEN

60 PALETTE 1,1,15,15,15 :REM DEFINE COLOUR 1 AS WHITE

70 PEN 0,1 :REM DRAWING PEN

80 LINE 25,25,295,175 :REM DRAW LINE

90 SLEEP 10 :REM WAIT FOR 10 SECONDS

100 SCREEN CLOSE 1 :REM CLOSE SCREEN AND RESTORE PALETTE

224

SCRATCH
Token: $F2

Format: SCRATCH filename [,D drive] [,U unit] [,R]

Usage: Erases (“scratches”) a disk file.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

R Recover a previously erased file. This will only work if there were no
write operations between erasure and recovery, which may have altered
the contents of the disk.

Remarks: SCRATCH filename is a synonym of ERASE filename and DELETE file-
name.

In direct mode the success and the number of erased files is printed.
The second to last number from the message contains the number of
successfully erased files,

Examples: Using SCRATCH

SCRATCH "DRM",U9 :REM ERASE FILE DRM ON UNIT 9

01, FILES SCRATCHED,01,00

SCRATCH "OLD*" :REM ERASE ALL FILES BEGINNING WITH "OLD"

01, FILES SCRATCHED,04,00

SCRATCH "R*=PRG" :REM ERASE PROGRAM FILES STARTING WITH 'R'

01, FILES SCRATCHED,09,00

225

SCREEN
Token: $FE $2E

Format: SCREEN [screen,] width, height, depth
SCREEN CLR colour
SCREEN DEF width flag, height flag, depth
SCREEN SET drawscreen, viewscreen
SCREEN OPEN [screen]
SCREEN CLOSE [screen]

Usage: Bitmap graphics: manages a graphics screen.

There are two approaches available when preparing the screen for the
drawing of graphics: a simplified approach, and a detailed approach.

Simplified approach:

The first version of SCREEN (which has pixel units for width and height) is
the easiest way to start a graphics screen, and is the preferred method
if only a single screen is needed (i.e., a second screen isn’t needed for
double buffering). This does all of the preparatory work for you, and
will call commands such as GRAPHIC CLR, SCREEN CLR, SCREEN DEF,
SCREEN OPEN and, SCREEN SET on your behalf. It takes the following
parameters:

SCREEN [screen,] width, height, depth

• screen the screen number (0 – 3) is optional. If no screen number is
given, screen 0 is used. To keep this approach as simple as possible,
it is suggested to use the default screen 0.

• width 320 or 640 (default 320)

• height 200 or 400 (default = 200)

• depth 1..8 (default = 8), colours = 2 ^depth.

The argument parser is error tolerant and uses default values for width
(320) and height (200) if the parsed argument is not valid.

This version of SCREEN starts with a predefined palette and sets the
background to black, and the pen to white, so drawing can start imme-
diately using the default values.

On the other hand, the detailed approach will require the setting of
palette colours and pen colour before any drawing can be done.

The colour value must be in the range of 0 to 15. See appendix 6 on
page 297 for the list of colours in the default system palette.

226

When you are finished with your graphics screen, simply call SCREEN
CLOSE [screen] to return to the text screen.

Detailed approach:

The other versions ofSCREEN perform special actions, used for advanced
graphics programs that open multiple screens, or require ”double buffer-
ing”. If you have chosen the simplified approach, you will not require any
of these versions below, apart from SCREEN CLOSE.

SCREEN CLR colour (or SCNCLR colour)
Clears the active graphics screen by filling it with colour.

SCREEN DEF screen, width flag, height flag, depth
Defines resolution parameters for the chosen screen. The width flag and
height flag indicate whether high resolution (1) or low resolution (0) is
chosen.

• screen screen number 0 – 3

• width flag 0 – 1 (0:320, 1:640 pixel)

• height flag 0 – 1 (0:200, 1:400 pixel)

• depth 1 – 8 (2 – 256 colours)

Note that the width and height values here are flags, and not pixel units.

SCREEN SET drawscreen, viewscreen
Sets screen numbers (0 – 3) for the drawing and the viewing screen, i.e.,
while one screen is being viewed, you can draw on a separate screen and
then later flip between them. This is what’s known as double buffering.

SCREEN OPEN screen
Allocates resources and initialises the graphics context for the selected
screen (0 – 3). An optional variable name as a further argument, gets
the result of the command that can be tested afterwards for success.

SCREEN CLOSE [screen]
Closes screen (0 – 3) and frees resources. If no value is given, it will
default to 0. Also note that upon closing a screen, PALETTE RESTORE is
automatically performed for you.

Examples: Using SCREEN:

5 REM *** SIMPLIFIED APPROACH ***

10 SCREEN 320,200,2 :REM SCREEN #0: 320 X 200 X 2

20 PEN 1 :REM DRAWING PEN COLOUR = 1 (WHITE)

30 LINE 25,25,295,175 :REM DRAW LINE

40 GETKEY A$:REM WAIT KEYPRESS

50 SCREEN CLOSE :REM CLOSE SCREEN 0 (RESTORE PALETTE)

227

5 REM *** DETAILED APPROACH ***

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 1,0,0,2 :REM SCREEN #1: 320 X 200 X 2

30 SCREEN OPEN 1 :REM OPEN SCREEN 1

40 SCREEN SET 1,1 :REM USE SCREEN 1 FOR RENDERING AND VIEWING

50 SCREEN CLR 0 :REM CLEAR SCREEN

60 PALETTE 1,1,15,15,15:REM DEFINE COLOUR 1 AS WHITE

70 PEN 0,1 :REM DRAWING PEN

80 LINE 25,25,295,175 :REM DRAW LINE

90 SLEEP 10 :REM WAIT 10 SECONDS

100 SCREEN CLOSE 1 :REM CLOSE SCREEN 1 (RESTORE PALETTE)

228

SET
Token: $FE $2D

Format: SET DEF unit
SET DISK old TO new
SET VERIFY <ON | OFF>

Usage: SET DEF redefines the default unit for disk access, which is initialised to
8 by the DOS. Commands that do not explicitly specify a unit will use this
default unit.

SET DISK is used to change the unit number of a disk drive temporarily.

SET VERIFY enables or disables the DOS verify-after-write mode for 3.5
drives.

Remarks: These settings are valid until a reset or shutdown.

Examples: Using SET:

DIR :REM SHOW DIRECTORY OF UNIT 8

SET DEF 11 :REM UNIT 11 BECOMES DEFAULT

DIR :REM SHOW DIRECTORY OF UNIT 11

DLOAD "*" :REM LOAD FIRST FILE FROM UNIT 11

SET DISK 8 TO 9 :REM CHANGE UNIT# OF DISK DRIVE 8 TO 9

DIR U9 :REM SHOW DIRECTORY OF UNIT 9 (FORMER 8)

SET VERIFY ON :REM ACTIVATE VERIFY-AFTER-WTITE MODE

229

SETBIT
Token: $FE $2D $FE $4E

Format: SETBIT address, bit number

Usage: Sets a single bit at the address.

If the address is in the range of $0000 to $FFFF (0 – 65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

The bit number is a value in the range of 0 – 7.

A bank value > 127 is used to access I/O, and the underlying system
hardware such as the VIC, SID, FDC, etc.

Example: Using SETBIT

10 BANK 128 :REM SELECT SYSTEM MAPPING

20 SETBIT $D011,6 :REM ENABLE EXTENDED BACKGROUND MODE

30 SETBIT $D01B,0 :REM SET BACKGROUND PRIORITY FOR SPRITE 0

230

SGN
Token: $B4

Format: SGN(numeric expression)

Returns: The sign of a numeric expression, as a number.

• -1 negative argument.

• 0 zero.

• 1 positive, non-zero argument.

Example: Using SGN

10 ON SGN(X)+2 GOTO 100,200,300 :REM TARGETS FOR MINUS,ZERO,PLUS

20 Z = SGN(X) * ABS(Y) : REM COMBINE SIGN OF X WITH VALUE OF Y

231

SIN
Token: $BF

Format: SIN(numeric expression)

Returns: The sine of an angle.

The argument is expected in units of radians. The result is in the range
(-1.0 to +1.0)

Remarks: A value in units of degrees can be converted to radians by multiplying it
with π/180.

Examples: Using SIN

PRINT SIN(0.7)

.644217687

X=30:PRINT SIN(X * ~ / 180)

.5

232

SLEEP
Token: $FE $0B

Format: SLEEP seconds

Usage: Pauses execution for the given duration.

The argument is a positive floating point number of seconds. The preci-
sion is 1 microsecond.

Remarks: Pressing RUN
STOP interrupts the sleep.

Example: Using SLEEP

20 SLEEP 10 :REM WAIT 10 SECONDS

40 SLEEP 0.0005 :REM SLEEP 500 MICRO SECONDS

50 SLEEP 0.01 :REM SLEEP 10 MILLI SECONDS

60 SLEEP DD :REM TAKE SLEEP TIME FROM VARIABLE DD

70 SLEEP 600 :REM SLEEP 10 MINUTES

233

SOUND
Token: $DA

Format: SOUND voice, freq, dur [{, dir, min, sweep, wave , pulse}]
SOUND CLR

Usage: SOUND plays a sound effect.

voice voice number (1 – 6).

freq frequency (0 – 65535).

dur duration in jiffies (0 – 32767). The duration of a jiffy depends on
the display standard. There are 50 jiffies per second with PAL, 60 per
second with NTSC.

dir direction (0:up, 1:down, 2:oscillate).

min minimum frequency (0 – 65535).

sweep sweep range (0 – 65535).

wave waveform (0:triangle, 1:sawtooth, 2:square, 3:noise).

pulse pulse width (0 – 4095).

SOUND CLR silences all sound from SOUND and PLAY, and resets the
sound system and all parameters.

Remarks: SOUND starts playing the sound effect and immediately continues with
the execution of the next BASIC statement while the sound effect is
played. This enables the showing of graphics or text and playing sounds
simultaneously.

SOUND uses SID2 (for voices 1 to 3) and SID4 (for voices 4 to 6) of the
4 SID chips of the system. By default, SID1 and SID2 are slightly right-
biased and SID3 and SID4 are slightly left-biased in the stereo mix.

The 6 voice channels used by the SOUND command (on SID2+SID4) are
distinct to the 6 channels used by the PLAY command (on SID1+SID3).
Sound effects will not interrupt music, and vice versa.

Examples: Using SOUND

IF PEEK($D06F) AND $80 THEN J = 60: ELSE J = 50 :REM J IS JIFFIES PER SECOND

SOUND 1, 7382, J :REM PLAY SQUARE WAVE ON VOICE 1 FOR 1 SECOND

SOUND 2, 800, J*60 :REM PLAY SQUARE WAVE ON VOICE 2 FOR 1 MINUTE

SOUND 3, 4000, 120, 2, 2000, 400, 1 :REM PLAY SWEEPING SAWTOOTH WAVE ON VOICE 3

SOUND CLR :REM SILENCE SOUND, RESET PARAMETERS

234

SPC
Token: $A6

Format: SPC(columns)

Returns: As an argument to PRINT, a string of cursor-right PETSCII codes, suitable
for printing to advance the cursor the given number of columns.

Printing this is similar to pressing → <column> times.

This is not a real function and does not generate a string. It can only be
used as an argument to PRINT.

Remarks: The name of this function is derived from “spaces,” which is misleading.
The function prints cursor right characters, not spaces. The contents
of those character cells that are skipped will not be changed.

Example: Using SPC

10 FOR I=8 TO 12

20 PRINT SPC(-(I<10));I :REM TRUE = -1, FALSE = 0

30 NEXT I

RUN

8

9

10

11

12

235

SPEED
Token: $FE $26

Format: SPEED [speed]

Usage: Sets the CPU clock speed to 1MHz, 3.5MHz, or 40MHz.

speed CPU clock speed where:

• 1 sets CPU to 1MHz.

• 3 sets CPU to 3MHz.

• Anything other than 1 or 3 sets the CPU to 40MHz.

Remarks: Although it’s possible to call SPEED with any real number, the precision
part (the decimal point and any digits after it), will be ignored.

SPEED is a synonym of FAST.

SPEED has no effect if POKE 0,65 has previously been used to set the CPU
to 40MHz.

Example: Using SPEED

10 SPEED :REM SET SPEED TO MAXIMUM (40 MHZ)

20 SPEED 1 :REM SET SPEED TO 1 MHZ

30 SPEED 3 :REM SET SPEED TO 3.5 MHZ

40 SPEED 3.5 :REM SET SPEED TO 3.5 MHZ

236

SPRCOLOR
Token: $FE $08

Format: SPRCOLOR [{mc1, mc2}]

Usage: Sets multi-colour sprite colours.

SPRITE, which sets the attributes of a sprite, only sets the foreground
colour. For setting the additional two colours of multi-colour sprites, use
SPRCOLOR instead.

Remarks: The colours used with SPRCOLOR will affect all sprites. Refer to the
SPRITE command for more information.

The final argument to SPRITE enables multi-colour mode for the sprite.

Example: Using SPRCOLOR:

10 SPRITE 1,1,2,,,,1 :REM TURN SPRITE 1 ON (FG = 2)

20 SPRCOLOR 4,5 :REM MC1 = 4, MC2 = 5

237

SPRITE
Token: $FE $07

Format: SPRITE CLR
SPRITE LOAD filename [,D drive] [,U unit]
SPRITE SAVE filename [,D drive] [,U unit]
SPRITE num [{, switch, colour, prio, expx, expy, mode}]

Usage: SPRITE CLR clears all sprite data and sets all pointers and attributes to
their default values.

SPRITE LOAD loads sprite data from filename to sprite memory.

SPRITE SAVE saves sprite data from sprite memory to filename.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

The last form switches a sprite on or off and sets its attributes:

num sprite number

switch 1: on, 0: off

colour sprite foreground colour

prio 0: sprite in front of text, 1: sprite behind text

expx 1: sprite X expansion

expy 1: sprite Y expansion

mode 1: multi-colour sprite

Remarks: SPRCOLORmust be used to set additional colours for multi-colour sprites
(mode = 1).

Example: Using SPRITE:

2290 CLR:SCNCLR:SPRITE CLR

2300 SPRITE LOAD "DEMOSPRITES1"

2320 FORI=0TO7: C=I: IFC=6THENC=8

2330 MOVSPR I, 60+30*I,0 TO 60+30*I,65+20*I, 3:SPRITE I,1,C,,1,1:NEXT: SLEEP3

2340 FORI=0TO7: SPRITE I,,,,0,0 :NEXT: SLEEP3: SPRITE CLR

2350 FORI=0TO7: MOVSPR I,45*I#5 :NEXT: FORI=0TO7: SPRITE I,1: NEXT

2360 FORI=0TO7:X=60+30*I:Y=65+20*I:DO

2370 LOOPUNTIL(X=RSPPOS(I,.))AND(Y=RSPPOS(I,1)):MOVSPRI,.#.:NEXT

238

SPRSAV
Token: $FE $16

Format: SPRSAV source, destination

Usage: Copies sprite data between two sprites, or between a sprite and a string
variable.

source sprite number or string variable.

destination sprite number or string variable.

Remarks: Source and destination can either be a sprite number or a string variable,

SPRSAV can be used with the basic form of sprites (C64 compatible)
only. These sprites occupy 64 bytes of memory, and create strings of
length 64, if the destination parameter is a string variable.

Extended sprites and variable height sprites cannot be used with
SPRSAV.

A string array of sprite data can be used to store many shapes and copy
them fast to the sprite memory with the command SPRSAV.

It’s also a convenient method to read or write shapes of single sprites
from or to a disk file.

Example: Using SPRSAV:

10 SPRITE LOAD "SPRITEDATA" :REM LOAD DATA FOR 8 SPRITES

20 SPRITE 1,1 :REM TURN SPRITE 1 ON

30 SPRSAV 1,2 :REM COPY SPRITE 1 DATA TO SPRITE 2

40 SPRITE 2,1 :REM TURN SPRITE 2 ON

50 SPRSAV 1,A$:REM SAVE SPRITE 1 DATA IN STRING A$

239

SQR
Token: $BA

Format: SQR(numeric expression)

Returns: The square root of a numeric expression.

Remarks: The argument must not be negative.

Example: Using SQR

PRINT SQR(2)

1.41421356

240

ST
Format: ST

Usage: The status of the last I/O operation.

If ST is zero, there was no error, otherwise it is set to a device dependent
error code.

Remarks: ST is a reserved system variable.

Example: Using ST

100 MX=100:DIM T$(MX) :REM DATA ARRAY

110 DOPEN#1,"DATA" :REM OPEN FILE

120 IF DS THEN PRINT"COULD NOT OPEN":STOP

130 LINE INPUT#1,T$(N):N=N+1 :REM READ ONE RECORD

140 IF N>MX THEN PRINT "TOO MANY DATA":GOTO 160

150 IF ST=0 THEN 130 :REM ST = 64 FOR END-OF-FILE

160 DCLOSE#1

170 PRINT "READ";N;" RECORDS"

241

STEP
Token: $A9

Format: FOR index = start TO end [STEP step] ... NEXT [index]

Usage: STEP is an optional part of a FOR loop.

The index variable may be incremented or decremented by a constant
value after each iteration. The default is to increment the variable by 1.
The index variable must be a real variable.

start initial value of the index.

end is checked at the end of an iteration, and determines whether an-
other iteration will be performed, or if the loop will exit.

step defines the change applied to to the index at the end of a loop iter-
ation. Positive step values increment it, while negative values decrement
it. It defaults to 1.0 if not specified.

Remarks: For positive increments, end must be greater than or equal to start. For
negative increments, end must be less than or equal to start.

It is bad programming practice to change the value of the index variable
inside the loop or to jump into or out of a loop body with GOTO.

Example: Using STEP

10 FOR D=0 TO 360 STEP 30

20 R = D * ~ / 180

30 PRINT D;R;SIN(R);COS(R);TAN(R)

40 NEXT D

242

STOP
Token: $90

Format: STOP

Usage: Stops the execution of the BASIC program.

A message will be displayed showing the line number where the program
stopped. The READY. prompt appears and the computer goes into direct
mode, waiting for keyboard input.

Remarks: All variable definitions are still valid after STOP. They may be inspected
or altered, and the program may be continued with CONT. However, any
editing of the program source will disallow any further continuation.

Program execution can be resumed with CONT.

Example: Using STOP

10 IF V < 0 THEN STOP : REM NEGATIVE NUMBERS STOP THE PROGRAM

20 PRINT SQR(V) : REM PRINT SQUARE ROOT

243

STR$
Token: $C4

Format: STR$(numeric expression)

Returns: A string of the formatted value of the argument, as if it were PRINTed to
the string.

Example: Using STR$:

A$ = "THE VALUE OF PI IS " + STR$(~)

PRINT A$

THE VALUE OF PI IS 3.14159265

244

STRBIN$
Token: $C2 $12

Format: STRBIN$(numeric expression)

Returns: The number value as a string of its binary representation.

Example: Using STRBIN$:

PRINT STRBIN$(245)

11110101

245

SYS
Token: $9E

Format: SYS address [{, areg, xreg, yreg, zreg, sreg}]

Usage: Calls a machine language subroutine.

address start address of the subroutine. This can be a ROM-resident
KERNAL routine or any other routine which has previously been loaded or
POKEd to RAM.

areg CPU accumulator value.

xreg CPU X register value.

yreg CPU Y register value.

zreg CPU Z register value.

sreg Status register value.

SYS loads the arguments (if any) into registers, then calls the subroutine.
The called routine must exit with an RTS instruction. After the subroutine
has returned, it saves the new register contents, then returns control to
the BASIC program.

If the address value is 16 bit ($0000 - $FFFF), the BANK value is used
to determine the actual address. If the address is higher than $FFFF, it is
interpreted as a linear 24 bit address and the value of BANK is ignored.

Unlike other BASIC commands that access memory, there are restrictions
on which addresses SYS can access:

• SYS can only access banks 0 – 5, and cannot access Attic RAM or
upper memory, even when using long addresses.

• Only offsets $2000 – $7FFF within a given bank actually refer to
the memory of that bank.

• SYS can only access offsets $0000 – $1FFF in bank 0.

• Accessing offsets $8000 – $FFFF always accesses memory as if
BANK is set to 128 (including ROM and I/O register mappings),
even when BANK is set to a different bank or when using long ad-
dresses.

Remarks: The register values after a SYS call are stored in system memory. RREG
can be used to retrieve these values.

Despite the unusual restrictions on addresses, the SYS command is a
powerful way to combine BASIC and machine language code. For short
routines, memory in bank 0 offsets $1800 – $1EFF are available for pro-
gram use. If care is taken to avoid overwriting the end of the BASIC

246

program, machine language routines can be loaded elsewhere in bank
0 up to offset $BFFF.

Using SYS properly (i.e. without corrupting the system) requires some
technical skill, which is out of scope of the User’s Guide. For more infor-
mation and examples, see the MEGA65 Book, Programming with Memory
(chapter 13).

Example: Using SYS:

10 REM DEMO FOR SYS:CHANGING THE BORDER COLOUR

20 BANK 0

30 POKE $4000,$EE,$20,$D0,$60 :REM INC $D020:RTS

40 SYS $4000 :REM CALL SUBROUTINE AT $4000 / BANK $00

50 GETKEY A$:IF A$ <> "Q" THEN 40

247

TAB
Token: $A3

Format: TAB(column)

Returns: Positions the cursor at column.

This is only done if the target column is right of the current cursor column,
otherwise the cursor will not move. The column count starts with 0 being
the left-most column.

Remarks: This function shouldn’t be confused with TAB , which advances the cur-
sor to the next tab-stop.

Example: Using TAB

10 FOR I=1 TO 5

20 READ A$

30 PRINT "* " A$ TAB(10) " *"

40 NEXT I

50 END

60 DATA ONE,TWO,THREE,FOUR,FIVE

RUN

* ONE *

* TWO *

* THREE *

* FOUR *

* FIVE *

248

TAN
Token: $C0

Format: TAN(numeric expression)

Returns: The tangent of an angle.

The argument is expected in units of radians. The result is in the range
(-1.0 to +1.0)

Remarks: A value in units of degrees can be converted to radians by multiplying it
with π/180.

Example: Using TAN

PRINT TAN(0.7)

.84228838

X=45:PRINT TAN(X * ~ / 180)

.999999999

249

TEMPO
Token: $FE $05

Format: TEMPO speed

Usage: Sets the playback speed for PLAY.

speed 1 – 255

The duration (in seconds) of a whole note is computed with duration =
24/speed.

Example: Using TEMPO

10 VOL 8,8

20 FOR T = 24 TO 18 STEP -2

30 TEMPO T

40 PLAY "T0M3O4QGAGFED","T2O4M5P0H.DP5GB","T5O3IGAGAGAABABAB"

50 IF RPLAY(1) THEN GOTO 50

60 NEXT T

70 PLAY "T0O5QCO4GEH.C","T2O5IEFEDEDCEGO6P8CP0R","T5O3ICDCDEFEDCO4C"

250

THEN
Token: $A7

Format: IF expression THEN true clause [ELSE false clause]

Usage: THEN is part of an IF statement.

expression is a logical or numeric expression. A numeric expression is
evaluated as FALSE if the value is zero and TRUE for any non-zero value.

true clause one or more statements starting directly after THEN on the
same line. A line number after THEN performs a GOTO to that line in-
stead.

false clause one or more statements starting directly after ELSE on the
same line. A linenumber after ELSE performs aGOTO to that line instead.

Remarks: The standard IF ... THEN ... ELSE structure is restricted to a single line.
But the true clause and false clause may be expanded to several lines
using a compound statement surrounded with BEGIN and BEND.

Example: Using THEN

1 REM THEN

10 RED$=CHR$(28) : BLACK$=CHR$(144) : WHITE$=CHR$(5)

20 INPUT "ENTER A NUMBER";V

30 IF V<0 THEN PRINT RED$; : ELSE PRINT BLACK$;

40 PRINT V : REM PRINT NEGATIVE NUMBERS IN RED

50 PRINT WHITE$

60 INPUT "END PROGRAM: (Y/N)"; A$

70 IF A$="Y" THEN END

80 IF A$="N" THEN 20 : ELSE 60

251

TI
Format: TI

Usage: A high precision timer variable with a resolution of 1 micro second.

It is started or reset with CLR TI, and can be accessed in the same way
as any other variable in expressions.

Remarks: TI is a reserved system variable. The value in TI is the number of seconds
(to 6 decimal places) since it was last cleared or started.

Example: Using TI

100 CLR TI :REM START TIMER

110 FOR I%=1 TO 10000:NEXT :REM DO SOMETHING

120 ET = TI :REM STORE ELAPSED TIME IN ET

130 PRINT "EXECUTION TIME:";ET;" SECONDS"

252

TI$
Format: TI$

Usage: The current time of day, as a string.

The time value is updated from the RTC (Real-Time Clock). The string TI$
is formatted as: ”hh:mm:ss”.

TI$ is a read-only variable, which reads the registers of the RTC and for-
mats the values to a string. This differs from other Commodore computers
that do not have an RTC.

Remarks: TI$ is a reserved system variable.

It is possible to access the RTC registers directly via PEEK. The start ad-
dress of the registers is at $FFD7110.

For more information on how to set the Real-TimeClock, refer to the Con-
figuration Utility section on page the MEGA65 Book, The Configuration
Utility (section 4).

100 REM ****** READ RTC ****** ALL VALUES ARE BCD ENCODED

110 RT = $FFD7110 :REM ADDRESS OF RTC

120 FOR I=0 TO 5 :REM SS,MM,HH,DD,MO,YY

130 T(I)=PEEK(RT+I) :REM READ REGISTERS

140 NEXT I :REM USE ONLY LAST TWO DIGITS

150 T(2) = T(2) AND 127 :REM REMOVE 24H MODE FLAG

160 T(5) = T(5) + $2000 :REM ADD YEAR 2000

170 FOR I=2 TO 0 STEP -1 :REM TIME INFO

180 PRINT USING ">## ";HEX$(T(I));

190 NEXT I

RUN

12 52 36

Example: Using TI$

PRINT DT$;TI$

05-APR-2021 15:10:00

253

TO
Token: $A4

Format: keyword TO

Usage: TO is a secondary keyword used in combination with primary keywords,
such as BACKUP, BSAVE, CHANGE, CONCAT, COPY, FOR, GO, RE-
NAME, and SET DISK

Remarks: TO cannot be used on its own.

Example: Using TO

10 GO TO 1000 :REM AS GOTO 1000

20 GOTO 1000 :REM SHORTER AND FASTER

30 FOR I=1 TO 10 :REM TO IS PART OF THE LOOP

40 PRINT I:NEXT :REM LOOP END

50 COPY "CODES" TO "BACKUP" :REM COPY SINGLE FILE

254

TRAP
Token: $D7

Format: TRAP [line number]

Usage: Registers (or clears) a BASIC error handler subroutine.

With an error handler registered, when a BASIC program encounters an
error, it calls the subroutine instead of exiting the program. During the
subroutine, the system variable ER contains the error number. The TRAP
error handler can then decide whether to STOP or RESUME execution.

TRAP with no argument disables the error handler, and errors will then
be handled by the normal system routines.

Example: Using TRAP

10 TRAP 100

20 FOR I=1 TO 100

30 PRINT EXP(I)

40 NEXT

50 PRINT "STOPPED FOR I =";I

60 END

100 PRINT ERR$(ER): RESUME 50

255

TROFF
Token: $D9

Format: TROFF

Usage: Turns off trace mode (switched on by TRON).

When trace mode is active, each line number is printed before it is exe-
cuted. TROFF turns off trace mode.

Example: Using TROFF

10 TRON :REM ACTIVATE TRACE MODE

20 FOR I=85 TO 100

30 PRINT I;EXP(I)

40 NEXT

50 TROFF :REM DEACTIVATE TRACE MODE

RUN

[10][20][30] 85 8.22301268E+36

[40][30] 86 2.2352466E+37

[40][30] 87 6.0760302E+37

[40][30] 88 1.65163625E+38

[40][30] 89

?OVERFLOW ERROR IN 30

READY.

256

TRON
Token: $D8

Format: TRON

Usage: Turns on trace mode.

When trace mode is active, each line number is printed before it is exe-
cuted. TRON turns on trace mode.

This is useful for debugging the control flow of a BASIC program. To use
it, add TRON and TROFF statements to the program around the lines that
need debugging.

Example: Using TRON

10 TRON :REM ACTIVATE TRACE MODE

20 FOR I=85 TO 100

30 PRINT I;EXP(I)

40 NEXT

50 TROFF :REM DEACTIVATE TRACE MODE

RUN

[10][20][30] 85 8.22301268E+36

[40][30] 86 2.2352466E+37

[40][30] 87 6.0760302E+37

[40][30] 88 1.65163625E+38

[40][30] 89

?OVERFLOW ERROR IN 30

READY.

257

TYPE
Token: $FE $27

Format: TYPE [P] filename [,D drive] [,U unit]

Usage: Prints the contents of a file containing text encoded as PETSCII.

If the P flag is specified, the listing will pause for each screenful of text.
Pressing Q quits page mode, while any other key continues to the next
page.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: TYPE cannot be used to print BASIC programs. Use LIST for programs
instead. TYPE can only process SEQ or USR files containing records of
PETSCII text, delimited by the CR character. (The CR (carriage return)
character can be written to a file using CHR$(13).)

See the EDIT command for a way to create and modify text files inter-
actively with the MEGA65.

Example: Using TYPE

TYPE "README"

TYPE "README 1ST",U9

TYPE P "MOBYDICK"

258

UNLOCK
Token: $FE $4F

Format: UNLOCK filename/pattern [,D drive] [,U unit]

Usage: Unlocks a locked file on disk.

The specified file or a set of files, that matches the pattern, is unlocked
and nomore protected. It can be deleted afterwards with the commands
DELETE, ERASE or SCRATCH

The LOCK command locks a file.

filename the name of a file. Either a quoted string such as "DATA", or a
string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: Unlocking a file that is already unlocked has no effect.

In direct mode the number of unlocked files is printed. The second to last
number from the message contains the number of unlocked files,

Examples: Using UNLOCK

UNLOCK "SNOOPY",U9 :REM UNLOCK FILE SNOOPY ON UNIT 9

03,FILES UNLOCKED,01,00

UNLOCK "BS*" :REM UNLOCK ALL FILES BEGINNING WITH "BS"

03,FILES UNLOCKED,04,00

259

UNTIL
Token: $FC

Format: DO ... LOOP
DO [<UNTIL | WHILE> logical expression]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> logical expression]

Usage: DO and LOOP define the start of a BASIC loop. Using DO and LOOP
alone without any modifiers creates an infinite loop, which can only be
exited by the EXIT statement. The loop can be controlled by adding
UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement exits the current loop only.

Examples: Using DO and LOOP.

10 PW$="":DO

20 GET A$:PW$=PW$+A$

30 LOOP UNTIL LEN(PW$)>7 OR A$=CHR$(13)

10 DO : REM WAIT FOR USER DECISION

20 GET A$

30 LOOP UNTIL A$="Y" OR A$="N" OR A$="y" OR A$="n"

10 DO WHILE ABS(EPS) > 0.001

20 GOSUB 2000 : REM ITERATION SUBROUTINE

30 LOOP

10 I%=0 : REM INTEGER LOOP 1-100

20 DO I%=I%+1

30 LOOP WHILE I% < 101

260

USING
Token: $FB

Format: PRINT[# channel,] USING format; argument

Usage: Parses the format string and evaluates the argument. The argument can
be either a string or a numeric value. The format of the resulting output
is directed by the format string.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN. If no channel is specified, the output goes
to the screen.

format string variable or a string constant which defines the rules for
formatting. When using a number as the argument, formatting can be
done in either CBM style, providing a pattern such as ###.## or in C style
using a <width.precision> specifier, such as %3D %7.2F %4X .

argument the number to be formatted. If the argument does not fit into
the format e.g. trying to print a 4 digit variable into a series of three
hashes (###), asterisks will be used instead.

Remarks: The format string is only applied for one argument, but it is possible to
append more than one USING format;argument sequences.

argument may consist of printable characters and control codes. Print-
able characters are printed to the cursor position, while control codes
are executed. The number of # characters sets the width of the output. If
the first character of the format string is an equals ’=’ sign, the argument
string is centered. If the first character of the format string is a greater
than ’>’ sign, the argument string is right justified.

261

Example: USING with a corresponding PRINT#

PRINT USING "##.##";~, USING " [%6.4F] ";SQR(2)

3.14 [1.4142]

PRINT USING " < # # # > ";12*31

< 3 7 2 >

PRINT USING "###"; "ABCDE"

ABC

PRINT USING ">###"; "ABCDE"

CDE

PRINT USING "ADDRESS:$%4X";65000

ADDRESS:$FDE8

A$="###,###,###.#":PRINT USING A$;1E8/3

33,333,333.3

262

USR
Token: $B7

Format: USR(numeric expression)

Usage: Invokes an assembly language routine whose memory address is stored
at $02F8 – $02F9.

The result of the numeric expression is written to floating point accu-
mulator 1.

After executing the assembly routine, BASIC returns the contents of the
floating point accumulator 1.

Remarks: Banks 0 – 127 give access to RAM or ROM banks. Banks greater than
127 are used to access I/O, and the underlying system hardware such
as the VIC, SID, FDC, etc.

The floating point accumulator is a facility of the KERNAL that is outside
the scope of the User’s Guide.

Example: Using USR

10 WPOKE $2F8, $7F33 : REM NEGATE ROUTINE

20 PRINT USR(~)

30 PRINT USR(-5)

263

VAL
Token: $C5

Format: VAL(string expression)

Returns: The decimal floating point value represented by a string.

Remarks: VAL parses characters from the beginning of the string that resemble a
BASIC decimal number, including a leading negative sign, digits, a deci-
mal point, and an exponent. If it encounters an invalid character, it stops
parsing and returns the result up to that point in the string.

Example: Using VAL

PRINT VAL("78E2")

7800

PRINT VAL("7+5")

7

PRINT VAL("1.256")

1.256

PRINT VAL("$FFFF")

0

264

VERIFY
Token: $95

Format: VERIFY filename [, unit [, binflag]]

Usage: VERIFY with no binflag compares a BASIC program in memory with a
disk file of type PRG. It does the same as DVERIFY, but the syntax is
different.

VERIFY with binflag compares a binary file in memory with a disk file of
type PRG. It does the same as BVERIFY, but the syntax is different.

filename is either a quoted string, e.g. "PROG" or a string expression.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
defaults to 8.

Remarks: VERIFY can only test for equality. It gives no information about the num-
ber or position of different valued bytes. VERIFY exits with either the
message OK or with VERIFY ERROR.

VERIFY is obsolete in BASIC 65. It is only here for backwards compati-
bility. It is recommended to use DVERIFY and BVERIFY instead.

Examples: Using VERIFY

VERIFY "ADVENTURE"

VERIFY "ZORK-I",9

VERIFY "1:DUNGEON",10

265

VIEWPORT
Token: $FE $31

Format: VIEWPORT CLR
VIEWPORT DEF x, y, width, height

Usage: Bitmap graphics: manages the viewport of a screen.

VIEWPORT DEF defines a clipping region with the origin (upper left po-
sition) set to x, y and the width and height. All following graphics com-
mands are limited to the VIEWPORT region.

VIEWPORT CLR fills the clipping region with the colour of the drawing
pen.

Remarks: The clipping region can be reset to full screen by the command
VIEWPORT DEF 0,0,WIDTH,HEIGHT using the same values for WIDHTH and HEIGHT as
in the SCREEN command.

Example: Using VIEWPORT

10 SCREEN 320,200,2

20 VIEWPORT DEF 20,30,100,120 :REM REGION 20->119, 30->149

30 PEN 1 :REM SELECT COLOUR 1

40 VIEWPORT CLR :REM FILL REGION WITH COLOUR OF PEN

50 GETKEY A$:REM WAIT FOR KEYPRESS

60 SCREEN CLOSE

266

VOL
Token: $DB

Format: VOL right, left

Usage: Sets the volume for sound output with SOUND or PLAY.

right is the volume for SIDs 1 and 2, and left is the volume for SIDs 3 and
4. The value ranges from 0 (off) to 15 (loudest).

Remarks: The terms ”right” and ”left” refer to the default pan settings for the
MEGA65 SID chips in the audio mixer. The actual volume and pan posi-
tion for each pair of SIDs depends on the audio mixer settings. You can
adjust the audio settings in the Freezer.

Example: Using VOL

10 TEMPO 22

20 FOR V = 2 TO 12 STEP 2

30 VOL V,16-V

40 PLAY "T0M3O4QGAGFED","T2O4M5P0H.DP5GB","T5O3IGAGAGAABABAB","G"

50 IF RPLAY(1) THEN GOTO 50

60 NEXT V

70 PLAY "T0O5QCO4GEH.C","T2O5IEFEDEDCEGO6P9CP0R","T5O3ICDCDEFEDCO4C","C"

267

VSYNC
Token: $FE $54

Format: VSYNC raster line

Usage: Waits until the selected raster line is active.

raster line (0 - 311) for PAL, (0 - 262) for NTSC mode.

This pauses execution of the BASIC program until the screen update
reaches the given vertical pixel coordinate. This is a very brief pause:
the screen updates 50 times per second in PAL mode, and 60 times per
second in NTSC mode. This is useful to change graphics parameters at
specific points in the screen update, and to synchronize BASIC program
logic with the screen refresh rate.

Example: Using VSYNC

10 IF FRE(-1)<920364 THEN PRINT"UPDATE ROM":END

20 BORDER 3 :REM CHANGE BORDER COLOUR TO CYAN

30 VSYNC 100 :REM WAIT UNTIL RASTER LINE 100

40 BORDER 7 :REM CHANGE BORDER COLOUR TO YELLOW

50 VSYNC 260 :REM WAIT UNTIL RASTER LINE 260

60 GOTO 20 :REM LOOP

268

WAIT
Token: $92

Format: WAIT address, andmask [, xormask]

Usage: Pauses the BASIC program until a requested bit pattern is read from the
given address.

address the address at the current memory bank, which is read.

andmask AND mask applied.

xormask XOR mask applied.

WAIT reads the byte value from address and applies the masks:
result = PEEK(address) AND andmask XOR xormask.

The pause ends if the result is non-zero, otherwise reading is repeated.
This may hang the computer indefinitely if the condition is never met.

Remarks: WAIT is typically used to examine hardware registers or system variables
and wait for an event, e.g. joystick event, mouse event, keyboard press
or a specific raster line is about to be drawn to the screen.

Example: Using WAIT

10 BANK 128

20 WAIT 211,1 :REM WAIT FOR SHIFT KEY BEING PRESSED

269

WHILE
Token: $ED

Format: DO ... LOOP
DO [<UNTIL | WHILE> logical expression]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> logical expression]

Usage: DO and LOOP define the start of a BASIC loop. Using DO and LOOP
alone without any modifiers creates an infinite loop, which can only be
exited by the EXIT statement. The loop can be controlled by adding
UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement exits the current loop only.

Examples: Using DO and LOOP

10 PW$="":DO

20 GET A$:PW$=PW$+A$

30 LOOP UNTIL LEN(PW$)>7 OR A$=CHR$(13)

10 DO : REM WAIT FOR USER DECISION

20 GET A$

30 LOOP UNTIL A$="Y" OR A$="N" OR A$="y" OR A$="n"

10 DO WHILE ABS(EPS) > 0.001

20 GOSUB 2000 : REM ITERATION SUBROUTINE

30 LOOP

10 I%=0 : REM INTEGER LOOP 1-100

20 DO I%=I%+1

30 LOOP WHILE I% < 101

270

WINDOW
Token: $FE $1A

Format: WINDOW left, top, right, bottom [, clear]

Usage: Sets the text screen window.

left left column

top top row

right right column

bottom bottom row

clear clear text window flag

By default, text updates occur on the entire available text screen. WIN-
DOW narrows the update region to a rectangle of the available screen
space.

Remarks: The row values range from 0 to 24. The column values range from 0 to
either 39 or 79. This depends on the screen mode.

There can be only one window on the screen. Pressing CLR
HOME twice or

PRINTing CHR$(19)CHR$(19) will reset the window to the default (full
screen).

Example: Using WINDOW

10 WINDOW 0,1,79,24 :REM SCREEN WITHOUT TOP ROW

20 WINDOW 0,0,79,24,1 :REM FULL SCREEN WINDOW CLEARED

30 WINDOW 0,12,79,24 :REM LOWER HALF OF SCREEN

40 WINDOW 20,5,59,15 :REM SMALL CENTRED WINDOW

271

WPEEK
Token: $CE $10

Format: WPEEK(address)

Returns: The 16-bit word value stored in memory at address (low byte) and ad-
dress + 1 (high byte), as an unsigned 16-bit number.

If the address is in the range of $0000 to $FFFF (0 – 65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

Remarks: Banks 0 – 127 give access to RAM or ROM banks. Banks greater than
127 are used to access I/O, and the underlying system hardware such
as the VIC, SID, FDC, etc.

Example: Using WPEEK

20 UA = WPEEK($02F8) :REM USR JUMP TARGET

50 PRINT "USR FUNCTION CALL ADDRESS";UA

272

WPOKE
Token: $FE $1D

Format: WPOKE address, word [, word ...]

Returns: Writes one or more 16-bit words into memory or memory mapped I/O,
starting at address.

If the address is in the range of $0000 to $FFFF (0 – 65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

word a value from 0 – 65535. The first word is stored at address (low
byte) and address+1 (high byte). The second word is stored at address+2
(low byte) and address+3 (high byte), etc. If a value is larger than 65535,
only the lower two bytes are used.

Remarks: The address is increased by two for each data word, so a memory range
can be written to with a single WPOKE.

Banks greater than 127 are used to access I/O, and the underlying sys-
tem hardware such as the VIC, SID, FDC, etc.

Example: Using WPOKE

10 BANK 128 :REM SELECT SYSTEM BANK

20 WPOKE $02F8,$1800 :REM SET USR VECTOR TO $1800

273

XOR
Token: $E9

Format: operand XOR operand

Usage: Performs a bit-wise logical Exclusive OR operation on two 16-bit values.

Integer operands are used as they are. Real operands are converted
to a signed 16-bit integer (losing precision). Logical operands are con-
verted to 16-bit integer using $FFFF, (decimal -1) for TRUE, and $0000
(decimal 0) for FALSE.

Expression Result
0 XOR 0 0

0 XOR 1 1

1 XOR 0 1

1 XOR 1 0

Remarks: The result is of type integer. If the result is used in a logical context,
the value of 0 is regarded as FALSE, and all other non-zero values are
regarded as TRUE.

Example: Using XOR

FOR I = 0 TO 8: PRINT I XOR 5;: NEXT I

5 4 7 6 1 0 3 2 13

274

CHAPTER 3
Screen Codes

• Screen Codes

276

SCREEN CODES
A text character is represented in screen memory by a screen code. There are 256
possible screen codes, each referring to an image in the current character set.

A complete character set contains two groups of 256 images, one for the uppercase
mode and one for the lowercase mode, for a total of 512 images. Only one mode
can be displayed at a time. The built-in character sets use the first 128 characters of
each group for normal characters and the next 128 for reversed versions of the same
characters.

In BASIC, the T@&() special array provides access to the characters on the screen us-
ing column and row indexes. The values in this special array are screen codes. The
FONT command changes between the built-in character sets. The CHARDEF com-
mand changes the image associated with a screen code.

Note: Screen codes are different to PETSCII codes. PETSCII codes are used to store,
transmit, and receive textual data, and control the way strings are printed to the
screen. When a PETSCII character is printed to the screen, the corresponding screen
code is written to screen memory. For a list of PETSCII codes, see appendix 4 on
page 281.

The following table lists the screen codes. When a code produces a different character
based on the mode, the character is listed as “uppercase / lowercase.”

0 @

1 A / a

2 B / b

3 C / c

4 D / d

5 E / e

6 F / f

7 G / g

8 H / h

9 I / i

10 J / j

11 K / k

12 L / l

13 M / m

14 N / n

15 O / o

16 P / p

17 Q / q

18 R / r

19 S / s

20 T / t

21 U / u

22 V / v

23 W / w

24 X / x

25 Y / y

26 Z / z

27 [

28 £

29]

30 ↑

31 ←

32 space

33 !

34 ”

35 #

36 $

37 %

38 &

39 ’

40 (

41)

42 *

43 +

44 ,

45 -

46 .

47 /

48 0

49 1

50 2

51 3

52 4

53 5

54 6

55 7

56 8

57 9

58 :

59 ;

277

60 <

61 =

62 >

63 ?

64 C

65 A / A

66 B / B

67 C / C

68 D / D

69 E / E

70 F / F

71 G / G

72 H / H

73 I / I

74 J / J

75 K / K

76 L / L

77 M / M

78 N / N

79 O / O

80 P / P

81 Q / Q

82 R / R

83 S / S

84 T / T

85 U / U

86 V / V

87 W / W

88 X / X

89 Y / Y

90 Z / Z

91 +

92 -

93 B

94 3 />

95] /:

96 space

97 j

98 i

99 t

100 [

101 g

102 <

103 m

104 /

105 ? /)

106 n

107 q

108 d

109 z

110 s

111 p

112 a

113 e

114 r

115 w

116 h

117 j

118 l

119 y

120 u

121 p

122 { /8

123 f

124 c

125 x

126 v

127 b

Note: In the built-in character sets, codes 128-255 are reversed versions of 0-127.

278

CHAPTER 4
PETSCII Codes

• PETSCII Codes and CHR$

280

PETSCII CODES AND CHR$
In BASIC, PRINT CHR$(X) can be used to print a character from a PETSCII code. Below is the
full table of PETSCII codes you can print by index. For example, while in the default
uppercase/graphics mode, by using index 65 from the table below as: PRINT CHR$(65) you
will print the letter A. You can read more about CHR$ on page 47.

You can also do the reverse with the ASC statement. For example: PRINT ASC("A") will
output 65, which matches the code in the table.

NOTE: Function key (F1-F14 + HELP) values in this table are not intended to be printed
via CHR$(), but rather to allow function-key input to be assessed in BASIC programs via
the GET / GETKEY commands.

0

1 ALTERNATE PALETTE

2 UNDERLINE ON

3

4 DEFAULT PALETTE

5 WHITE

6

7 BELL

8

9 TAB

10 LINEFEED

11 DISABLE
SHIFT

`

12 ENABLE
SHIFT

`

13 RETURN

14 LOWER CASE

15 BLINK/FLASH ON

16 F9

17 ↓

18 RVS ON

19 CLR
HOME

20 INST
DEL

21 F10 / BACK WORD

22 F11

23 F12 / NEXT WORD

24 SET/CLEAR TAB

25 F13

26 F14 / BACK TAB

27 ESCAPE

28 RED

29 →

30 GREEN

31 BLUE

32 SPACE

33 !

34 ”

35 #

36 $

37 %

38 &

39 ’

40 (

41)

42 *

43 +

44 ,

45 -

46 .

47 /

48 0

49 1

50 2

51 3

52 4

53 5

54 6

55 7

56 8

57 9

58 :

59 ;

60 <

61 =

62 >

63 ?

64 @

65 A

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

77 M

78 N

79 O

80 P

81 Q

82 R

83 S

84 T

85 U

86 V

281

87 W

88 X

89 Y

90 Z

91 [

92 £

93]

94 ↑

95 ←

96 C

97 A

98 B

99 C

100 D

101 E

102 F

103 G

104 H

105 I

106 J

107 K

108 L

109 M

110 N

111 O

112 P

113 Q

114 R

115 S

116 T

117 U

118 V

119 W

120 X

121 Y

122 Z

123 +

124 -

125 B

126 \

127]

128

129 ORANGE

130 UNDERLINE OFF

131 SHIFT RUN
STOP

132 HELP

133 F1

134 F3

135 F5

136 F7

137 F2

138 F4

139 F6

140 F8

141 SHIFT RETURN

142 UPPERCASE

143 BLINK/FLASH OFF

144 BLACK

145 ↑

146 RVS
OFF

147 SHIFT CLR
HOME

148 SHIFT INST
DEL

149 BROWN

150 LT. RED (PINK)

151 DK. GREY

152 GREY

153 LT. GREEN

154 LT. BLUE

155 LT. GREY

156 PURPLE

157 ←

158 YELLOW

159 CYAN

160 SPACE

161 k

162 i

163 t

164 [

165 g

166 �

167 m

168 /

169 ?

170 v

171 q

172 d

173 z

174 s

175 n

176 a

177 e

178 r

179 w

180 h

181 j

182 l

183 y

184 u

185 p

186 {

187 f

188 c

189 x

190 v

191 b

Note 1: Codes from 192 to 223 are equal to 96 to 127. Codes from 224 to 254 are
equal to 160 to 190, and code 255 is equal to 126.

Note 2: While using lowercase/uppercase mode (by pressing ` + SHIFT), be aware
that:

282

• The uppercase letters in region 65-90 of the above table are replaced with
lowercase letters.

• The graphical characters in region 97-122 of the above table are replaced with
uppercase letters.

• PETSCII’s lowercase (65-90) and uppercase (97-122) letters are in ASCII’s up-
percase (65-90) and lowercase (97-122) letter regions.

283

284

CHAPTER 5
Screen Editor Keys

• Screen Editor Keys

• Control codes

• Shifted codes

• Escape Sequences

286

SCREEN EDITOR KEYS
The following key combinations perform actions in the MEGA65 screen editor.

In some cases, a program can print the equivalent PETSCII codes to perform the same

actions. For example, CTRL + G , which plays a bell sound, can be printed by a

program as CHR$(7). To print an ESC sequence, use CHR$(27) to represent the ESC key,
followed by the next key in the sequence.

CONTROL CODES

Keyboard Control Function

Colours

CTRL + 1 to 8
Choose from the first range of
colours. See appendix 6 on
page 297 for the list of colours in
the system palette.

` + 1 to 8 Choose from the second range of
colours.

CTRL + E Restores the colour of the cursor
back to the default (white).

CTRL + D

Switches the VIC-IV to colour range
0-15 (default colours). These
colours can be accessed with CTRL

and keys 1 to 8 (for the first 8

colours), or ` and keys 1 to

8 (for the remaining 8 colours).

CTRL + A

Switches the VIC-IV to colour range
16-31 (alternate/rainbow colours).
These colours can be accessed with
CTRL and keys 1 to 8 (for the

first 8 colours), or ` and keys

1 to 8 (for the remaining 8
colours).

Tabs

287

Keyboard Control Function

CTRL + Z
Tabs the cursor to the left. If there
are no tab positions remaining, the
cursor will remain at the start of the
line.

CTRL + I
Tabs the cursor to the right. If there
are no tab positions remaining, the
cursor will remain at the end of the
line.

CTRL + X

Sets or clears the current screen
column as a tab position. Use CTRL

+ Z and I to jump back and

forth to all positions set with X .

Movement

CTRL + Q Moves the cursor down one line at a
time. Equivalent to ↓ .

CTRL + J

Moves the cursor down a position. If
you are on a long line of BASIC
code that has extended to two lines,
then the cursor will move down two
rows to be on the next line.

CTRL +] Equivalent to → .

CTRL + T

Backspace the character
immediately to the left and to shift
all rightmost characters one position
to the left. This is equivalent to
INST
DEL .

CTRL + M Performs a carriage return,

equivalent to RETURN .

Word movement

CTRL + U

Moves the cursor backward to the
start of the previous word. If there is
no previous word on the current line,
it moves to the first column of the
current line, then to the previous
line, until a line with a word is
encountered.

288

Keyboard Control Function

CTRL + W

Advances the cursor forward to the
start of the next word. If there is no
next word on the current line, it
moves to the first column of the next
line, until a line with a word is
encountered.

Scrolling

CTRL + P Scroll BASIC listing down one line.
Equivalent to F9 .

CTRL + V Scroll BASIC listing up one line.
Equivalent to F11 .

CTRL + S Equivalent to NO
SCROLL .

Formatting

CTRL + B
Enables underline text mode. You
can disable underline mode by

pressing ESC , then O .

CTRL + O
Enables flashing text mode. You can
disable flashing mode by pressing
ESC , then O .

Casing

CTRL + N Changes the text case mode from
uppercase to lowercase.

CTRL + K
Locks the uppercase/lowercase
mode switch usually performed with
` + SHIFT .

CTRL + L
Enables the uppercase/lowercase
mode switch that is performed with

the ` + SHIFT .

Miscellaneous
CTRL + G Produces a bell tone.
CTRL + [Equivalent to pressing ESC .
CTRL + * Enters the Matrix Mode Debugger.

289

SHIFTED CODES

Keyboard Control Function

SHIFT + INST
DEL

Insert a character at the current
cursor position and move all
characters to the right by one
position.

SHIFT + HOME
Clear home, clear the entire screen,
and move the cursor to the home
position.

ESCAPE SEQUENCES
To perform an Escape Sequence, briefly press and release ESC , then press one of
the following keys to perform the sequence.

Key Sequence

Editor behaviour

ESC X
Clears the screen and toggles
between 40 × 25 and 80 × 25 text
modes.

ESC 4 Clears the screen and switches to
40 × 25 text mode.

ESC 8 Clears the screen and switches to
80 × 25 text mode.

ESC 5 Switches to 80 × 50 text mode.

Note that some programs expect to be started
in 80 × 25 mode, and may not behave
correctly when started in 80 × 50 mode.

290

Key Sequence

ESC @
Clears a region of the screen,
starting from the current cursor
position, to the end of the screen.

ESC O Cancels the quote, reverse,
underline, and flash modes.

Scrolling
ESC V Scrolls the entire screen up one line.

ESC W Scrolls the entire screen down one
line.

ESC L Enables scrolling when ↓ is
pressed at the bottom of the screen.

ESC M

Disables scrolling. When pressing
↓ at the bottom of the screen,

the cursor will move to the top of
the screen. However, when pressing
↑ at the top of the screen, the

cursor will remain on the first line.

ESC N
Enables ”line pushing:” typing or
printing in the rightmost column
pushes subsequent lines down by
one.

ESC R

Disables ”line pushing:” typing or
printing in the rightmost column
moves the cursor to the beginning of
the next line, but does not push any
lines. Disable both line pushing (
ESC R) and scrolling (ESC

M) to allow PRINTing in the
rightmost column without disturbing
the rest of the display.

Insertion and deletion

ESC I
Inserts an empty line at the current
cursor position and moves all
subsequent lines down one position.

291

Key Sequence

ESC D
Deletes the current line and moves
lines below the cursor up one
position.

ESC P Erases all characters from the cursor
to the start of the current line.

ESC Q Erases all characters from the cursor
to the end of the current line.

Movement

ESC J Moves the cursor to the start of the
current line.

ESC K
Moves the cursor to the last
non-whitespace character on the
current line.

ESC ↑

Saves the current cursor position.

Use ESC ← (next to 1) to
move it back to the saved position.
Note that the ↑ used here is next

to RESTORE .

ESC ←

Restores the cursor position to the
position stored via a prior a press of

the ESC ↑ (next to RESTORE) key

sequence. Note that the ← used

here is next to 1 .

ESC HOME
Restores the cursor position to the
position stored via a prior a press of
HOME .

Windowing

ESC T

Sets the top-left corner of the
windowed area. All typed
characters and screen activity will
be restricted to the area. Also see
ESC B . Windowed mode can be

disabled by pressing CLR
HOME twice.

292

Key Sequence

ESC B

Sets the bottom right corner of the
windowed area. All typed
characters and screen activity will
be restricted to the area. Also see
ESC T . Windowed mode can be

disabled by pressing CLR
HOME twice.

Cursor behaviour

ESC A

Enables auto-insert mode. Any keys
pressed will be inserted at the
current cursor position, shifting all
characters on the current line after
the cursor to the right by one
position.

ESC C Disables auto-insert mode, reverting
back to overwrite mode.

ESC E Sets the cursor to non-flashing
mode.

ESC F Sets the cursor to regular flashing
mode.

Bell behaviour

ESC G Enables the bell which can be
sounded using CTRL and G .

ESC H Disable the bell so that pressing
CTRL and G will have no effect.

Colours

ESC U

Switches the VIC-IV to colour range
0-15 (default colours). These
colours can be accessed with CTRL

and keys 1 to 8 (for the first 8

colours), or ` and keys 1 to

8 (for the remaining colours).

293

Key Sequence

ESC S

Switches the VIC-IV to colour range
16-31 (alternate/rainbow colours).
These colours can be accessed with
CTRL and keys 1 to 8 (for the

first 8 colours), or ` and keys

1 to 8 (for the remaining
colours).

Tabs

ESC Y Set the default tab stops (every 8
spaces) for the entire screen.

ESC Z
Clears all tab stops. Any tabbing

with CTRL and I will move the
cursor to the end of the line.

294

CHAPTER 6
System Palette

• System Palette

296

SYSTEM PALETTE
The following table describes the system colour palette as it is defined by default.

Colour palette indexes are used as values in the C@&() special array, and as argu-
ments for BASIC commands such as BACKGROUND, BORDER,COLOR, FOREGROUND,
HIGHLIGHT, PEN, and SCREEN CLR.

Index Red Green Blue Colour
0 0 0 0 Black
1 15 15 15 White
2 15 0 0 Red
3 0 15 15 Cyan
4 15 0 15 Purple
5 0 15 0 Green
6 0 0 15 Blue
7 15 15 0 Yellow
8 15 6 0 Orange
9 10 4 0 Brown

10 15 7 7 Light Red (Pink)
11 5 5 5 Dark Grey
12 8 8 8 Medium Grey
13 9 15 9 Light Green
14 9 9 15 Light Blue
15 11 11 11 Light Grey
16 14 0 0 Guru Meditation
17 15 5 0 Rambutan
18 15 11 0 Carrot
19 14 14 0 Lemon Tart
20 7 15 0 Pandan
21 6 14 6 Seasick Green
22 0 14 3 Soylent Green
23 0 15 9 Slimer Green
24 0 13 13 The Other Cyan
25 0 9 15 Sea Sky
26 0 3 15 Smurf Blue
27 0 0 14 Screen of Death
28 7 0 15 Plum Sauce
29 12 0 15 Sour Grape
30 15 0 11 Bubblegum
31 15 3 6 Hot Tamales

297

298

CHAPTER 7
Supporters & Donors

• Organisations

• Contributors

• Supporters

300

The MEGA65 would not have been possible to create without the generous support
of many organisations and individuals.

We are still compiling these lists, so apologies if we haven’t included you yet. If you
know anyone we have left out, please let us know, so that we can recognise the con-
tribution of everyone who has made the MEGA65 possible, and into the great retro-
computing project that it has become.

ORGANISATIONS
The MEGA Museum of Electronic Games & Art e.V. Germany
EVERYTHING

Trenz Electronic, Germany
MOTHERBOARD MANUFACTURING SALES

Hintsteiner, Austria
CASE

GMK, Germany
KEYBOARD

KEVAG Telekom, Germany
WEB HOSTING

301

CONTRIBUTORS
Andreas Liebeskind
(libi in paradize)
CFO MEGA eV

Thomas Hertzler
(grumpyninja)
USA spokesman

Russell Peake
(rdpeake)
Bug herding

Alexander Nik Petra
(n0d)
Early case design

Ralph Egas
(0-limits)
Business advisor

Lucas Moss
MEGAphone PCB design

Daren Klamer
(Impakt)
Manual proof-reading

Daniël Mantione
(dmantione)
C64 hardware guru

Dr. Canan Hastik
(indica)
Chairwoman MEGA eV

Simon Jameson
(Shallan)
Platform enhancements

Stephan Kleinert
(ubik)
Destroyer of BASIC 10

Wayne Johnson
(sausage)
Manual additions

L. Kleiss
(LAK132)
MegaWAT presentation software

Maurice van Gils
(Maurice)
BASIC 65 example programs

Andrew Owen
(Cheveron)
Keyboard, Sinclair support

Adam Barnes
(amb5l)
HDMI expert and board revision

Wayne Rittimann, Jr.
(johnwayner)
Bug squashing on all levels

302

SUPPORTERS
3c74ce64 Arne Neumann Christian Gräfe
8-Bit Classics Arne Richard Tyarks Christian Heffner
@11110110100 Axel Klahr Christian Kersting
Aaron Smith Balaz Ondrej Christian Schiller
Achim Mrotzek Barry Thompson Christian Streck
Adolf Nefischer Bartol Filipovic Christian Weyer
Adrian Esdaile Benjamin Maas Christian Wyk
Adrien Guichard Bernard Alaiz Christoph Haug
Ahmed Kablaoui Bernhard Zorn Christoph Huck
Alan Bastian Witkowski Bieno Marti-Braitmaier Christoph Pross
Alan Field Bigby Christopher Christopher
Alastair Paulin-Campbell Bill LaGrue Christopher Kalk
Alberto Mercuri Bjoerg Stojalowski Christopher Kohlert
Alexander Haering Björn Johannesson Christopher Nelson
Alexander Kaufmann Bjørn Melbøe Christopher Taylor
Alexander Niedermeier Bo Goeran Kvamme Christopher Whillock
Alexander Soppart Boerge Noest Claudio Piccinini
Alfonso Ardire Bolko Beutner Claus Skrepek
Amiga On The Lake Brett Hallen Collen Blijenberg
André Kudra Brian Gajewski Constantine Lignos
André Simeit Brian Green Crnjaninja
André Wösten Brian Juul Nielsen Daniel Auger
Andrea Farolfi Brian Reiter Daniel Julien
Andrea Minutello Bryan Pope Daniel Lobitz
Andreas Behr Burkhard Franke Daniel O’Connor
Andreas Freier Byron Goodman Daniel Teicher
Andreas Grabski Cameron Roberton (KONG) Daniel Tootill
Andreas Millinger Carl Angervall Daniel Wedin
Andreas Nopper Carl Danowski Daniele Benetti
Andreas Ochs Carl Stock Daniele Gaetano Capursi
Andreas Wendel Manufaktur Carl Wall Dariusz Szczesniak
Andreas Zschunke Carlo Pastore Darrell Westbury
Andrew Bingham Carlos Silva David Asenjo Raposo
Andrew Dixon Carsten Sørensen David Dillard
Andrew Mondt Cenk Miroglu Miroglu David Gorgon
Andrzej Hłuchyj Chang sik Park David Norwood
Andrzej Sawiniec Charles A. Hutchins Jr. David Raulo
Andrzej Śliwa Chris Guthrey David Ross
Anthony W. Leal Chris Hooper de voughn accooe
Arkadiusz Bronowicki Chris Stringer Dean Scully
Arkadiusz Kwasny Christian Boettcher Dennis Jeschke
Arnaud Léandre Christian Eick Dennis Schaffers
Arne Drews Christian Gleinser Dennis Schierholz

303

Dennis Schneck Frank Haaland Helge Förster
denti Frank Hempel Hendrik Fensch
Dick van Ginkel Frank Koschel Henning Harperath
Diego Barzon Frank Linhares Henri Parfait
Dierk Schneider Frank Sleeuwaert Henrik Kühn
Dietmar Krueger Frank Wolf Holger Burmester
Dietmar Schinnerl FranticFreddie Holger Sturk
Dirk Becker Fredrik Ramsberg Howard Knibbs
Dirk Wouters Fridun Nazaradeh Hubert de Hollain
Domingo Fivoli Friedel Kropp Huberto Kusters
DonChaos Garrick West Hugo Maria Gerardus v.d. Aa
Donn Lasher Gary Lake-Schaal Humberto Castaneda
Douglas Johnson Gary Pearson Ian Cross
Dr. Leopold Winter Gavin Jones IDE64 Staff
Dusan Sobotka Geir Sigmund Straume Igor Ianov
Earl Woodman Gerd Mitlaender Igor Kurtes
Ed Reilly Giampietro Albiero Immo Beutler
Edoardo Auteri Giancarlo Valente Ingo Katte
Eduardo Gallardo Gianluca Girelli Ingo Keck
Eduardo Luis Arana Giovanni Medina Insanely Interested Publishing
Eirik Juliussen Olsen Glen Fraser IT-Dienstleistungen Obsieger
Emilio Monelli Glen R Perye III Ivan Elwood
EP Technical Services Glenn Main Jaap HUIJSMAN
Epic Sound Gordon Rimac Jace Courville
Erasmus Kuhlmann GRANT BYERS Jack Wattenhofer
ergoGnomik Grant Louth Jakob Schönpflug
Eric Hilaire Gregor Bubek Jakub Tyszko
Eric Hildebrandt Gregor Gramlich James Hart
Eric Hill Guido Ling James Marshburn
Eric Jutrzenka Guido von Gösseln James McClanahan
Erwin Reichel Guillaume Serge James Sutcliffe
Espen Skog Gunnar Hemmerling Jan Bitruff
Evangelos Mpouras Günter Hummel Jan Hildebrandt
Ewan Curtis Guy Simmons Jan Iemhoff
Fabio Zanicotti Guybrush Threepwood Jan Kösters
Fabrizio Di Dio Hakan Blomqvist Jan Peter Borsje
Fabrizio Lodi Hans Pronk Jan Schulze
FARA Gießen GmbH Hans-Jörg Nett Jan Stoltenberg-Lerche
FeralChild Hans-Martin Zedlitz Janne Tompuri
First Choice Auto’s Harald Dosch Jannis Schulte
Florian Rienhardt Harri Salokorpi Jari Loukasmäki
Forum64. de Harry Culpan Jason Smith
Francesco Baldassarri Harry Venema Javier Gonzalez Gonzalez
Frank Fechner Heath Gallimore Jean-Paul Lauque
Frank Glaush Heinz Roesner Jeffrey van der Schilden
Frank Gulasch Heinz Stampfli Jens Schneider

304

Jens-Uwe Wessling Kenneth Joensson Marco Cappellari
Jesse DiSimone Kevin Edwards Marco Rivela
Jett Adams Kevin Thomasson Marco van de Water
Johan Arneklev Kim Jorgensen Marcus Gerards
Johan Berntsson Kim Rene Jensen Marcus Herbert
Johan Svensson Kimmo Hamalainen Marcus Linkert
Johannes Fitz Konrad Buryło Marek Pernicky
John Cook Kosmas Einbrodt Mario Esposito
John Deane Kurt Klemm Mario Fetka
John Dupuis Lachlan Glaskin Mario Teschke
John Nagi Large bits collider Mariusz Tymków
John Rorland Lars Becker Mark Adams
John Sargeant Lars Edelmann Mark Anderson
John Traeholt Lars Slivsgaard Mark Green
Jon Sandelin Lasse Lambrecht Mark Hucker
Jonas Bernemann Lau Olivier Mark Leitiger
Jonathan Prosise Lee Chatt Mark Spezzano
Joost Honig Loan Leray Mark Watkin
Jordi Pakey-Rodriguez Lorenzo Quadri Marko Rizvic
Jöre Weber Lorenzo Travagli Markus Bieler
Jörg Jungermann Lorin Millsap Markus Bonet
Jörg Schaeffer Lothar James Foss Markus Dauberschmidt
Jörg Weese Lothar Serra Mari Markus Fehr
Josef Hesse Luca Papinutti Markus Fuchs
Josef Soucek Ludek Smetana Markus Guenther-Hirn
Josef Stohwasser Lukas Burger Markus Liukka
Joseph Clifford Lutz-Peter Buchholz Markus Merz
Joseph Gerth Luuk Spaetgens Markus Roesgen
Jovan Crnjanin Mad Web Skills Markus Uttenweiler
Juan Pablo Schisano MaDCz Martin Bauhuber
Juan S. Cardona Iguina Magnus Wiklander Martin Benke
JudgeBeeb Maik Diekmann Martin Gendera
Juliussen Olsen Malte Mundt Martin Groß
Juna Luis Fernandez Garcia Manfred Wittemann Martin Gutenbrunner
Jürgen Endras Manuel Beckmann Martin Johansen
Jürgen Herm Stapelberg Manzano Mérida Martin Marbach
Jyrki Laurila Marc ”3D-vice” Schmitt Martin Sonnleitner
Kai Pernau Marc Bartel Martin Steffen
Kalle Pöyhönen Marc Jensen Marvin Hardy
Karl Lamford Marc Schmidt Massimo Villani
Karl-Heinz Blum Marc Theunissen Mathias Dellacherie
Karsten Engstler Marc Tutor Mathieu Chouinard
Karsten Westebbe Marc Wink Matthew Adams
katarakt Marcel Buchtmann Matthew Browne
Keith McComb Marcel Kante Matthew Carnevale
Kenneth Dyke Marco Beckers Matthew Palmer

305

Matthew Santos Michele Porcu Paul Jackson
Matthias Barthel Miguel Angel Rodriguez Jodar Paul Johnson
Matthias Dolenc Mikael Lund Paul Kuhnast (mindrail)
Matthias Fischer Mike Betz Paul Massay
Matthias Frey Mike Kastrantas Paul Westlake
Matthias Grandis Mike Pikowski Paul Woegerer
Matthias Guth Mikko Hämäläinen Pauline Brasch
Matthias Lampe Mikko Suontausta Paulo Apolonia
Matthias Meier Mirko Roller Pete Collin
Matthias Mueller Miroslav Karkus Pete of Retrohax.net
Matthias Nofer Morgan Antonsson Peter Eliades
Matthias Schonder Moritz Peter Gries
Maurice Al-Khaliedy Morten Nielsen Peter Habura
Max Ihlenfeldt MUBIQUO APPS,SL Peter Herklotz
Meeso Kim Myles Cameron-Smith Peter Huyoff
Michael Dailly Neil Moore Peter Knörzer
Michael Dötsch Nelson Peter Leswell
Michael Dreßel neoman Peter Weile
Michael Fichtner Nicholas Melnick Petri Alvinen
Michael Fong Nikolaj Brinch Jørgensen Philip Marien
Michael Geoffrey Stone Nils Andreas Philip Timmermann
Michael Gertner Nils Eilers Philipp Rudin
Michael Grün Nils Hammerich Pierre Kressmann
Michael Habel Nils77 Pieter Labie
Michael Härtig Norah Smith Piotr Kmiecik
Michael Haynes Norman King Power-on.at
Michael J Burkett Normen Zoch Przemysław Safonow
Michael Jensen Olaf Grunert Que Labs
Michael Jurisch Ole Eitels R Welbourn
Michael Kappelgaard Oliver Boerner R-Flux
Michael Kleinschmidt Oliver Brüggmann Rafał Michno
Michael Lorenz Oliver Graf Rainer Kappler
Michael Mayerhofer Oliver Smith Rainer Kopp
Michael Nurney Olivier Bori Rainer Weninger
Michael Rasmussen ONEPSI LLC Ralf Griewel
Michael Richmond oRdYNe Ralf Pöscha
Michael Sachse Osaühing Trioflex Ralf Reinhardt
Michael Sarbak OSHA-PROS USA Ralf Schenden
Michael Schneider Padawer Ralf Smolarek
Michael Scholz Patrick Becher Ralf Zenker
Michael Timm Patrick Bürckstümmer Ralph Bauer
Michael Traynor Patrick de Zoete Ralph Wernecke
Michael Whipp Patrick Toal Rédl Károly
Michal Ursiny Patrick Vogt Reiner Lanowski
Michele Chiti Paul Alexander Warren Remi Veilleux
Michele Perini Paul Gerhardt (KONG) Riccardo Bianchi

306

Richard Englert Sigurbjorn Larusson Thomas Niemann
Richard Good Sigurdur Finnsson Thomas Scheelen
Richard Menedetter Simon Lawrence Thomas Schilling
Richard Sopuch Simon Wolf Thomas Tahsin-Bey
Rick Reynolds spreen.digital Thomas Walter
Rico Gruninger Stefan Haberl Thomas Wirtzmann
Rob Dean Stefan Kramperth Thorsten Knoll
Robert Bernardo Stefan Richter Thorsten Nolte
Robert Eaglestone Stefan Schultze Tim Krome
Robert Grasböck Stefan Sonnek Tim Waite
Robert Miles Stefan Theil Timo Weirich
Robert Schwan Stefan Vrampe Timothy Blanks
Robert Shively Stefano Canali Timothy Henson
Robert Tangmar Stefano Mozzi Timothy Prater
Robert Trangmar Steffen Reiersen Tobias Butter
Rodney Xerri Stephan Bielmann Tobias Heim
Roger Olsen Stephen Jones Tobias Köck
Roger Pugh Stephen Kew Tobias Lüthi
Roland Attila Kett Steve Gray Tommi Vasarainen
Roland Evers Steve Kurlin Toni Ammer
Roland Schatz Steve Lemieux Tore Olsen
Rolf Hass Steven Combs Torleif Strand
Ronald Cooper Stewart Dunn Torsten Schröder
Ronald Hunn Stuart Marsh Tuan Nguyen
Ronny Hamida Sven Neumann Uffe Jakobsen
Ronny Preiß Sven Stache Ulrich Hintermeier
Roy van Zundert Sven Sternberger Ulrich Nieland
Rüdiger Wohlfromm Sven Wiegand Ulrik Kruse
Ruediger Schlenter Szabolcs Bence Urban Lindeskog
Rutger WIllemsen Tantrumedia Limited Ursula Förstle
Sampo Peltonen Techvana Operations Ltd. Uwe Anfang
Sarmad Gilani Teddy Turmeaux Uwe Boschanski
SAS74 Teemu Korvenpää Vedran Vrbanc
Sascha Hesse The Games Foundation Verm Project
Scott Halman Thierry Supplisson Wayne Rittimann
Scott Hollier Thieu-Duy Thai Wayne Sander
Scott Robison Thomas Bierschenk Wayne Steele
Sebastian Baranski Thomas Edmister Who Knows
Sebastian Bölling Thomas Frauenknecht Winfried Falkenhahn
Sebastian Felzmann Thomas Gitzen Wolfgang Becker
Sebastian Lipp Thomas Gruber Wolfgang Stabla
Sebastian Rakel Thomas Haidler Worblehat
Şemseddin Moldibi Thomas Jager www.patop69.net
Seth Morabito Thomas Karlsen Yan B
Shawn McKee Thomas Laskowski Zoltan Markus
Siegfried Hartmann Thomas Marschall Zsolt Zsila
Zytex Online Store

307

308

Bibliography

310

[1] L. Soares and M. Stumm, “Flexsc: Flexible system call scheduling with exception-
less system calls.” in Osdi, vol. 10, 2010, pp. 1–8.

[2] N. Montfort, P. Baudoin, J. Bell, I. Bogost, J. Douglass, M. C. Marino, M. Mateas,
C. Reas, M. Sample, and N. Vawter, 10 PRINT CHR $(205.5+ RND (1));: GOTO 10.
MIT Press, 2012.

[3] Actraiser, “Vic-ii for beginners: Screen modes, cheaper by the
dozen,” 2013. [Online]. Available: http://dustlayer.com/vic-ii/2013/4/26/
vic-ii-for-beginners-screen-modes-cheaper-by-the-dozen

311

http://dustlayer.com/vic-ii/2013/4/26/vic-ii-for-beginners-screen-modes-cheaper-by-the-dozen
http://dustlayer.com/vic-ii/2013/4/26/vic-ii-for-beginners-screen-modes-cheaper-by-the-dozen

312

INDEX

314

BASIC 65 Arrays, 8
BASIC 65 Commands

APPEND, 21
AUTO, 24
BACKGROUND, 25
BACKUP, 26
BANK, 27
BEGIN, 28
BEND, 29
BLOAD, 30
BOOT, 32
BORDER, 33
BOX, 34
BSAVE, 36
BVERIFY, 39
CATALOG, 40
CHANGE, 42
CHAR, 43
CHARDEF, 45
CHDIR, 46
CIRCLE, 48
CLOSE, 51
CLR, 52
CLRBIT, 53
CMD, 54
COLLECT, 55
COLLISION, 56
COLOR, 57
CONCAT, 58
CONT, 59
COPY, 60
CURSOR, 63
CUT, 64
DATA, 65
DCLEAR, 66
DCLOSE, 67
DEF FN, 70
DELETE, 71
DIM, 72
DIR, 73
Direct Mode, 5
DISK, 75

DLOAD, 76
DMA, 78
DMODE, 79
DO, 80
DOT, 83
DPAT, 84
DSAVE, 87
DVERIFY, 89
EDMA, 92
ELLIPSE, 95
ELSE, 97
END, 99
ENVELOPE, 100
ERASE, 102
EXIT, 104
FAST, 106
FGOSUB, 107
FGOTO, 108
FILTER, 109
FIND, 110
FONT, 113
FOR, 114
FOREGROUND, 115
FORMAT, 116
FREAD, 118
FREEZER, 119
FWRITE, 120
GCOPY, 121
GET, 122
GET#, 123
GETKEY, 124
GO64, 125
GOSUB, 126
GOTO, 127
GRAPHIC, 128
HEADER, 129
HELP, 130
HIGHLIGHT, 132
IF, 133
IMPORT, 134
INFO, 135
INPUT, 136

315

INPUT#, 137
INSTR, 139
KEY, 142
LET, 146
LINE, 147
LINE INPUT, 148
LINE INPUT#, 149
LIST, 150
LOAD, 151
LOADIFF, 153
LOCK, 155
LOOP, 158
MEM, 160
MERGE, 161
MKDIR, 163
MONITOR, 165
MOUNT, 166
MOUSE, 167
MOVSPR, 168
NEW, 170
NEXT, 171
OFF, 173
ON, 174
OPEN, 176
PAINT, 178
PALETTE, 179
PASTE, 180
PEN, 182
PLAY, 184
POLYGON, 189
PRINT, 192
PRINT USING, 194
PRINT#, 193
RCURSOR, 197
READ, 198
RECORD, 199
REM, 201
RENAME, 202
RENUMBER, 203
RESTORE, 205
RESUME, 206
RETURN, 207

RMOUSE, 210
RREG, 215
RUN, 220
SAVE, 222
SAVEIFF, 223
SCNCLR, 224
SCRATCH, 225
SCREEN, 226
SET, 229
SETBIT, 230
SLEEP, 233
SOUND, 234
SPEED, 236
SPRCOLOR, 237
SPRITE, 238
SPRSAV, 239
STEP, 242
STOP, 243
SYS, 246
TEMPO, 250
THEN, 251
TO, 254
TRAP, 255
TROFF, 256
TRON, 257
TYPE, 258
UNLOCK, 259
UNTIL, 260
USING, 261
VERIFY, 265
VIEWPORT, 266
VOL, 267
VSYNC, 268
WAIT, 269
WHILE, 270
WINDOW, 271

BASIC 65 Constants, 7
BASIC 65 Examples

AND, 20, 28, 38, 116, 129, 136,
138, 141, 172, 175, 191,
200, 234, 238, 253

APPEND, 21

316

BACKGROUND, 25
BLOAD, 31, 169
CATALOG, 40
CHARDEF, 45
CHR, 28, 47, 80, 97, 122, 124,

133, 143, 145, 148, 158,
187, 221, 251, 260, 270

CIRCLE, 50, 96
CLRBIT, 53
CMD, 54, 176
CONCAT, 58
CONT, 59
COPY, 61, 254
CUT, 64, 180
DATA, 65, 72, 154, 198, 205,

248
DECBIN, 69
DIR, 41, 74, 163, 229
DSAVE, 87, 137
EDMA, 92, 160
ELLIPSE, 96
ELSE, 98, 109, 133, 234, 251
END, 56, 65, 72, 94, 98, 99,

101, 103, 108, 133, 206,
207, 217, 248, 251, 255,
268

ENVELOPE, 100, 186
FGOTO, 108
FORMAT, 116, 129
GCOPY, 121
GET, 28, 80, 104, 122, 123,

158, 260, 270
IF, 20, 28, 29, 38, 50, 85, 86,

94, 97–99, 101, 103, 104,
109, 122–124, 126, 127,
133, 136, 138, 141, 149,
172, 175, 177, 190, 200,
210, 214, 217, 221, 234,
241, 243, 247, 250, 251,
267, 268

INFO, 135
JOY, 141, 175

LEN, 28, 80, 145, 158, 260, 270
LINE, 104, 123, 128, 147–149,

178, 179, 182, 208, 223,
224, 227, 228, 241

LIST, 54, 150, 176
LOADIFF, 154
LOCK, 155
LOG, 105, 156
LOG10, 157
MOD, 164
MOUNT, 166
NEW, 170
NOT, 172
PAINT, 178, 179
PEEK, 72, 181, 187, 234, 253
POS, 190
PRINT, 19, 20, 22, 23, 28, 29,

38, 47, 51, 52, 54, 56, 57,
59, 62, 63, 65, 68–70, 72,
86, 88, 92, 94, 97–99, 101,
103–105, 107–109,
112–114, 117, 123, 126,
127, 130, 131, 133, 136,
138, 141, 144, 145, 148,
149, 156, 157, 159, 162,
164, 171, 172, 175, 177,
181, 187, 190, 192, 193,
195, 197, 198, 200,
205–213, 215, 217, 221,
232, 235, 240–245, 248,
249, 251–257, 262–264,
272, 274

READ, 65, 72, 138, 198, 205,
248

RENUMBER, 204
RETURN, 56, 98, 107, 109, 126,

127, 141, 175, 207
RGRAPHIC, 208
RSPPOS, 218, 238
RSPRITE, 219
SAVE, 143, 222

317

SCREEN, 44, 50, 64, 83, 96,
121, 128, 147, 154, 160,
178–180, 182, 189, 208,
212, 213, 223, 224, 227,
228, 266

SET, 128, 154, 179, 182, 208,
213, 224, 228, 229

SETBIT, 230
SGN, 231
SLEEP, 63, 109, 154, 169, 207,

224, 228, 233
SOUND, 234
SPC, 235
SPRITE, 56, 216, 218, 219,

237–239
SPRSAV, 239
STOP, 85, 86, 104, 123, 126,

127, 138, 198, 210, 241,
243

STR, 244
STRBIN, 245
TEMPO, 100, 186, 250, 267
TRAP, 94, 101, 103, 206, 255
USING, 70, 112, 113, 195, 253,

262
USR, 263
VOL, 100, 186, 250, 267
VSYNC, 268
WAIT, 269
WINDOW, 271
WPEEK, 187, 272

BASIC 65 Functions
ABS, 19
ASC, 22
ATN, 23
BUMP, 38
CHR$, 47
COS, 62
DEC, 68
DECBIN, 69
ERR$, 103
EXP, 105

FN, 70, 112
FRE, 117
HEX$, 131
INT, 140
JOY, 141
LEFT$, 144
LEN, 145
LOG, 156
LOG10, 157
LPEN, 159
MID$, 162
MOD, 164
PEEK, 181
PIXEL, 183
POINTER, 187
POKE, 188
POS, 190
POT, 191
RCOLOR, 196
RGRAPHIC, 208
RIGHT$, 209
RND, 211
RPALETTE, 212
RPEN, 213
RPLAY, 214
RSPCOLOR, 216
RSPEED, 217
RSPPOS, 218
RSPRITE, 219
RWINDOW, 221
SGN, 231
SIN, 232
SPC, 235
SQR, 240
STR$, 244
STRBIN$, 245
TAB, 248
TAN, 249
USR, 263
VAL, 264
WPEEK, 272
WPOKE, 273

318

BASIC 65 Operators, 10
AND, 20
NOT, 172
OR, 177
XOR, 274

BASIC 65 System Commands
EDIT, 90

BASIC 65 System Variables
DS, 85
DS$, 86
DT$, 88
EL, 94
ER, 101
ST, 241
TI, 252
TI$, 253

BASIC 65 Variables, 7

Commodore 64

GO64 mode, 125

Keyboard
CTRL, 287
Cursor Keys, 292
Escape Sequences, 290
PETSCII Codes and CHR$, 47,

281
Screen Codes, 277
Shift Keys, 290

Keywords, 3

Machine Code Monitor
MONITOR command, 165

Screen Text and Colour Arrays, 9

Windows
WINDOW command, 271

319

	Introduction
	Welcome to the MEGA65!
	Other Books in this series
	Come Join Us!

	BASIC 65 Command Reference
	Commands, Functions, and Operators
	Direct Mode Commands
	Command Syntax Descriptions
	Fonts
	BASIC 65 Constants
	BASIC 65 Variables
	BASIC 65 Arrays
	Screen Text and Colour Arrays
	BASIC 65 Operators
	Operator Precedence
	Keywords And Tokens Part 1
	Keywords And Tokens Part 2
	Tokens And Keywords Part 1
	Tokens And Keywords Part 2

	BASIC Command Reference
	ABS
	AND
	APPEND
	ASC
	ATN
	AUTO
	BACKGROUND
	BACKUP
	BANK
	BEGIN
	BEND
	BLOAD
	BOOT
	BORDER
	BOX
	BSAVE
	BUMP
	BVERIFY
	CATALOG
	CHANGE
	CHAR
	CHARDEF
	CHDIR
	CHR$
	CIRCLE
	CLOSE
	CLR
	CLRBIT
	CMD
	COLLECT
	COLLISION
	COLOR
	CONCAT
	CONT
	COPY
	COS
	CURSOR
	CUT
	DATA
	DCLEAR
	DCLOSE
	DEC
	DECBIN
	DEF FN
	DELETE
	DIM
	DIR
	DISK
	DLOAD
	DMA
	DMODE
	DO
	DOPEN
	DOT
	DPAT
	DS
	DS$
	DSAVE
	DT$
	DVERIFY
	EDIT
	EDMA
	EL
	ELLIPSE
	ELSE
	END
	ENVELOPE
	ER
	ERASE
	ERR$
	EXIT
	EXP
	FAST
	FGOSUB
	FGOTO
	FILTER
	FIND
	FN
	FONT
	FOR
	FOREGROUND
	FORMAT
	FRE
	FREAD
	FREEZER
	FWRITE
	GCOPY
	GET
	GET#
	GETKEY
	GO64
	GOSUB
	GOTO
	GRAPHIC
	HEADER
	HELP
	HEX$
	HIGHLIGHT
	IF
	IMPORT
	INFO
	INPUT
	INPUT#
	INSTR
	INT
	JOY
	KEY
	LEFT$
	LEN
	LET
	LINE
	LINE INPUT
	LINE INPUT#
	LIST
	LOAD
	LOADIFF
	LOCK
	LOG
	LOG10
	LOOP
	LPEN
	MEM
	MERGE
	MID$
	MKDIR
	MOD
	MONITOR
	MOUNT
	MOUSE
	MOVSPR
	NEW
	NEXT
	NOT
	OFF
	ON
	OPEN
	OR
	PAINT
	PALETTE
	PASTE
	PEEK
	PEN
	PIXEL
	PLAY
	POINTER
	POKE
	POLYGON
	POS
	POT
	PRINT
	PRINT#
	PRINT USING
	RCOLOR
	RCURSOR
	READ
	RECORD
	REM
	RENAME
	RENUMBER
	RESTORE
	RESUME
	RETURN
	RGRAPHIC
	RIGHT$
	RMOUSE
	RND
	RPALETTE
	RPEN
	RPLAY
	RREG
	RSPCOLOR
	RSPEED
	RSPPOS
	RSPRITE
	RUN
	RWINDOW
	SAVE
	SAVEIFF
	SCNCLR
	SCRATCH
	SCREEN
	SET
	SETBIT
	SGN
	SIN
	SLEEP
	SOUND
	SPC
	SPEED
	SPRCOLOR
	SPRITE
	SPRSAV
	SQR
	ST
	STEP
	STOP
	STR$
	STRBIN$
	SYS
	TAB
	TAN
	TEMPO
	THEN
	TI
	TI$
	TO
	TRAP
	TROFF
	TRON
	TYPE
	UNLOCK
	UNTIL
	USING
	USR
	VAL
	VERIFY
	VIEWPORT
	VOL
	VSYNC
	WAIT
	WHILE
	WINDOW
	WPEEK
	WPOKE
	XOR

	Screen Codes
	Screen Codes

	PETSCII Codes
	PETSCII Codes and CHR$

	Screen Editor Keys
	Screen Editor Keys
	Control codes
	Shifted codes
	Escape Sequences

	System Palette
	System Palette

	Supporters & Donors
	Organisations
	Contributors
	Supporters

	INDEX

