??
it
£ L
S
& %o
g

L L1}
MUSEUM OF ELECTRONIC GAMES & ART

MEGA65 TEAM

Assoc. Prof. Paul Gardner-

Stephen
(highlander)

Founder

Software and virtual hardware architect
Spokesman and lead scientist

Martin Streit
(seriously)

Video and photo production

Tax and organization
Social media

Dan Sanderson
(dddaaannn)

Media and documentation

MEGA&5.ROM

Dr. Edilbert Kirk
(Bit Shifter)
MEGA65.ROM
Manual and tools

Gabor Lénart
(LGB)
Emulator

Farai Aschwanden
(Tayger)

Filehost and tools
Financial advisory

Falk Rehwagen
(bluewaysw)
GEOS

Robert Steffens
(kibo)

Network technology
Core bug hunting

Detlef Hastik
(deft)

Co-founder
General manager
Marketing and sales

Oliver Graf

(lydon)

Release management

VHDL and platform enhancements

Antti Lukats
(antti-brain)
Host hardware design and production

Dieter Penner
(doubleflash)
Host hardware support

Mirko H.
(sy2002)
Additional platforms and consulting

Giirce Isikyildiz
(gurce)
Tools and enhancements

Daniel England
(Mew Pokémon)
Additional code and tools

Hernéan Di Pietro
(indiocolifa)

Additional emulation and tools

Roman Standzikowski
(FeralChild)
Open ROMs

Anton Schneider-Michallek
(adtbm)

Presentation and support

Reporting Errors and Omissions

This book is being continuously refined and improved upon by the MEGAS5 community.
The version of this edition is:

commit 0623542851767b1d9a960c8c33b3bTallT0fieda
date: Sun May 35 195:33:25 2824 +8338

We want this book to be the best that it possibly can. So if you see any errors, find
anything that is missing, or would like more information, please report them using the
MEGAGS5 User's Guide issue tracker:

https://github.com/mega65/mega65-user-guide/issues

You can also check there 1o see if anyone else has reported a similar problem, while
you wait for this book to be updated.

Finally, you can always download the latest versions of our suite of books from these
locations:

* https://mega65.org/mega65-book

* https://mega65.org/user-guide

* https://mega65.org/developer-guide
* https://mega65.org/basic65-ref

* https://mega65.org/chipset-ref

* https://mega65.org/docs

https://github.com/mega65/mega65-user-guide/issues
https://mega65.org/mega65-book
https://mega65.org/user-guide
https://mega65.org/developer-guide
https://mega65.org/basic65-ref
https://mega65.org/chipset-ref
https://mega65.org/docs

MEGA65 CHIPSET REFERENCE

Published by
the MEGA Museum of Electronic Games & Art e.V., Germany.

WORK IN PROGRESS

Copyright ©2019 - 2024 by Paul Gardner-Stephen, the MEGA Museum of Electronic
Games & Art e.V., and contributors.

This book is made available under the GNU Free Documentation License v 1.3, or later,
if desired. This means that you are free to modify, reproduce and redistribute this book,
subject to certain conditions. The full text of the GNU Free Documentation License
v1.3 can be found at https://www.gnu.org/licenses/fdl-1.3.en.html.

Implicit in this copyright license, is the permission to duplicate and/or redistribute this
document in whole or in part for use in education environments. We want to support
the education of future generations, so if you have any worries or concerns, please
contact us.

May 5, 2024

https://www.gnu.org/licenses/fdl-1.3.en.html

Contents

System Memory Map

Infroduction

MEGAG65 Native MemoryMap oL o
The First Sixteen 64KBBanks
Colour RAM L o
Additional RAM L
28-bit Address Space Lo

$D000 - $DFFF I/O Personalities

CPUMemoryBanking

C64/CE65ROMEmulation o oo oo
C65 Compatibility ROM Layouto oo

VIC-IV Video Interface Controller
Features
VIC-II/II/IV Register Access Control
Detecting VIC-II/II/IV oo oo
Video Output Formats, Timing and Compatibility
Integrated Marvellous Digital Hookup™ (IMDH™) Digital Video Output .
Connecting to Naughty Proprietary Digital Video Standards
Frame Timing
Physical and Logical Rasters
Badlines
Memory Interfaceo
Startup Base Addresses Lo o
Relocating ScreenMemory L L L L oL
Relocating Character GeneratorData
Relocating Colour / Attribute RAM oo o oo
Relocating Sprite Pointersand Images
HotRegisters
New Modes e

10
10
12

Why the new VIC-IV modes are Character and Bitmap modes, not Bit-

planemodes L L 31

Displaying more than 256 unique characters via "Super-Extended At-
tfribute Mode” L oL 32
Default Bit Fields (when GOTOX bit is cleared): 34
Bit Fields when GOTOX bitisset: 35
Using Super-Extended Attribute Mode L L. 36
Full-Colour (256 colours per character) Text Mode (FCM) 40
Nibble-colour (16 colours per character) Text Mode (NCM) 40
Alpha-Blending / Anti-Aliasing oL 40
Flipping Characters.o o 41
Variable Width Fonts 41
Raster Re-write Buffer 42
Sprites . . . e 43
VIC-II/lll Sprite Control 43
Extended Sprite Image Sets L L. 43
Variable Sprite Size L Lo 43
Variable Sprite Resolution Lo Lo 44
Sprite Palette Bank L L 44
Full-Colour Sprite Mode 45
VIC-ll ErrataLevel o o oo 48
VIC-llErratalevelso o 48
VIC-Il / Cé4 Registerso v v it i 49
VIC-Il f C65 Registerso oo it i 52
VIC-IV / MEGAG5 SpecificRegisters L. 54
Sound Interface Device (SID) 61
SIDRegisters e 63

vi

4 FO18-Compatible Direct Memory Access (DMA) Controller

6

7

FO18A/BDMAJobs
FO18 DMAJob ListFormat L
FO18 11 byte DMA List Structure

FO18B 12 byte DMA List Structure

Performing Simple DMA Operations

MEGAG5 Enhanced DMAJobso Lo
Texture Scaling and Line Drawing
Inine DMALists oo it i
Audio DMA L
Sample Address Management Lo L
Sample Playback frequency and Volume00

Pure SineWave L
Sample playback controlo Lo
FO18 “DMAgic" DMA Controllero
MEGAG65 DMA Controller Extensions

Unimplemented Functionality

6526 Complex Interface Adapter (CIA) Registers
CIA 6526 Registers. o o i
CIA 6526 Hypervisor Registers

4551 UART, GPIO and Utility Controller
C65 6551 UART Registerso
4551 General Purpose I/O & Miscellaneous Interface Registers

45E 100 Fast Ethernet Controller

Overview e
Differences to the RR-NET and similar solutions
Theory of Operation: Receiving Frames
Accessing the Ethernet Frame Buffers

Theory of Operation: Sending Frames

vii

67
69
70
71
71
72
78
81
83
84
84
85
85
86
86
86
90

9?1
93
96

99
101
102

Advanced Features 113

Broadcast and Multicast Traffic and Promiscuous Mode 113

Debugging and Diagnosis Features 113

Memory Mapped Registers L L 114
COMMAND registervalues 115
Example Programs L 116
451027 Multi-Function 1/O Controller 117
Overview 119
FO11-compatible Floppy Controller 119
Multiple Drive Support Lo 119
Buffered Sector Operations 120
Reading Sectors fromaDisk L L L. 120
Track Auto-Tune Function L oL 121
Sector Skew and Target AnyMode L L L. 121

Disk Layout and 1581 Logical Sectors 122
FD2000 Disks o o 122
High-Density and Variable-Density Disks 123
Track InformationBlocks o o oo L 123
Formatting Disks 124
Write Pre-Compensation 125
Buffered Sector Writing 125
Floppy Track DMA oo 126
Using Floppy Track DMA o ... 126
Understanding the Limitations of Floppy Drives 127

FO11 Floppy ControllerRegisters 128

SD card Controller and FO 11 Virtualisation Functions 130
SD card Based Disk Image Access oL 130
FO11 Virtualisation o 132
Dual-Bus SD card Controller oL 133
WriteGate o oo 133

viii

Fill Mode 134

Selecting Among Multiple SDcards 134

SD Controller Command Table 134

Touch Panel Interface L L 136
Audio Support Functions L 138
Other Audio Features 140
Mixer Feedback Registers 140

8/16 Bit Stereo Digital Audio Registers 141

Pulse Width vs Pulse Density Modulation 141
Miscellaneous /O Functions 142
4541 Serial Bus Controller 143
Overview 145
Features of the 45471 L 145
Supports Enhanced Serial Protocol Variants 145
Interrupt Enabled Processor Offload 145
Processor Speed Independence L. 145
Co-Existence through Open-Collector Logic 145
Theory of Operation e 145
Examples 147
Reading the DOS channel status 147
Command Reference L 149
RegisterTable 152
Serial Bus Timing 154
Send Byte Under Aftention 154
JitfyDOS™ Protocol Solicitation 157
JitfyDOS™ Send from Controller to Peripheral 159
JiffyDOS™ Controller Receive from Peripheral 161
Talker to Listener Turn-Around L L L. 164
Send Byte With End-or-Indicate (EOIl) 166
Receive Byte 168

Optional Integrated Data-Logger 169

Extracting Data from the Data Logger 170

10 Reference Tables 173
Unitsof Storage L 175
Base Conversion 176

11 Supporters & Donors 181
Organisations 183
Contributors L 184
Supporters ... e 185
INDEX 195

CHAPTER

System Memory Map
Introduction
MEGA65 Native Memory Map
$D00O0 - SDFFF 1/O Personalities
CPU Memory Banking

C64/C65 ROM Emulation

INTRODUCTION

The MEGAG5 computer has a large 28-bit address space, which allows it to address
up to 256MB of memory and memory-mapped devices. This memory map has several
different views, depending on which mode the computer is operating in. Broadly,
there are five main modes: (1) Hypervisor mode; (2) Cé4 compatibility mode; (3)
Cé5 compatibility mode; (4) UltiIMAX compatibility mode; and (5) MEGAS5-mode, or
one of the other modes, where the programmer has made use of MEGA65 enhanced
features.

It is important to understand that, unlike the C128, the C65 and MEGAS5 allow access
to all enhanced features from C64-mode, if the programmer wishes to do so. This
means that while we frequently talk about “Cé4-mode,” “Cé5-mode” and “MEGA& 5-
mode,” these are simply terms of convenience for the MEGASS with its memory map
(and sometimes other features) configured to provide an environment that matches
the appropriate mode. The heart of this is the MEGAS5’s flexible memory map.

In this appendix, we will begin by describing the MEGA&5's native memory map, that
is, where all of the memory, I/O devices and other features appear in the 28-bit ad-
dress space. We will then explain how C64 and C45 compatible memory maps are
accessed from this 28-bit address space.

MEGA65 NATIVE MEMORY MAP

The First Sixteen 64KB Banks

The MEGAGS5 uses a similar memory map to that of the C65 for the first MB of memory,
i.e., 16 memory banks of 64KB each. This is because the C65’s 4510 CPU can access
only TMB of address space. These banks can be accessed from BASIC 65 using the
BANK, DMA, PEEK and PDKE commands. The following table summarises the contents
of the first 16 banks:

HEX |DEC Address Contents

0 0 $O0xxxx First 64KB RAM. This is the RAM visible in
Cé4-mode.

1 1 $ Txxxx Second 64KB RAM. This is the 2nd 64KB
of RAM present on a C65.

2 2 $2xxxx First half of C65 ROM (C64-mode and
shared components) or RAM

3 3 $3xxxx Second half of C65 ROM (Cé5-mode
components) or RAM

4 4 $Axxxx Additional RAM (384KB or larger chip-
RAM models)

5 5 $5xxxx Additional RAM (384KB or larger chip-
RAM models)

6 6 $SExxxx Additional RAM (*512KB or larger chip-
RAM models)

7 7 $7 xxxx Additional RAM (*512KB or larger chip-
RAM models)

8 8 $8xxxx Additional RAM (* TMB or larger chip-
RAM models)

9 9 $Ixxxx Additional RAM (* TMB or larger chip-
RAM models)

A 10 $AxXxXxX Additional RAM (*1MB or larger chip-
RAM models)

B 11 $Bxxxx Additional RAM (* TMB or larger chip-
RAM models)

C 12 $Cxxxx Additional RAM (* TMB or larger chip-
RAM models)

D 13 $Dxxxx Additional RAM (* TMB or larger chip-
RAM models)

E 14 $Exxxx Additional RAM (*1TMB or larger chip-
RAM models)

F 15 $Fxxxx Additional RAM (* TMB or larger chip-
RAM models)

* Note that the MEGAGS5 presently only provides a model featuring 384KB of chip-
RAM. Future models may feature larger amounts of chip-RAM (such as 512KB and
1MB).

The key features of this address space are the 128KB of RAM in the first two banks,
which is also present on the C65. If you intend to write programs which can also run
on a C65, you should only use these two banks of RAM.

On all models it is possible to use all or part of the 128KB of “ROM” space as RAM. To
do this, you must first request that the Hypervisor removes the read-only protection on
this area, before you will be able to change its contents. If you are writing a program
which will start from Cé4-mode, or otherwise switch to using the C64 part of the ROM,
instead of the C65 part), then the second half of that space, i.e., BANK 3, can be safely
used for your programs. This gives a total of 192KB of RAM, which is available on all
models of the MEGA45.

On models that have 384KB or more of chip RAM, BANK 4 and 5 are also available.
Similarly, models which provide 1MB or more of chip RAM will have BANK 6 through 15
also available, giving a total of 896KB (or 260KB, if only the C64 part of the ROM is
required) of RAM available for your programs. Note that the MEGASS's built-in freeze
cartridge currently freezes only the first 384KB of RAM.

Colour RAM

The MEGA&5's VIC-IV video controller supports much larger screens than the VIC-II
or VIC-IIl. For this reason, it has access to a separate colour RAM, similar to on the
Cé4. For compatibility with the C45, the first two kilo-bytes of this are accessible at
$1F800 - $1FFFF. The full 32KB or 64KB of colour RAM is located at $FF80000. This
is most easily accessed through the use of advanced DMA operations, or the 32-bit
base-page indirect addressing mode of the processor.

At the time of writing, the BANK and PMA commands cannot be used to access the
rest of the colour RAM, because the colour RAM is not located in the first mega-byte
of address space. This may be corrected in a future revision of the MEGASS5, allowing
access to the full colour RAM via BANK 15 or an equivalent DMA job.

Additional RAM

Apart from the 384kb of chip-RAM found as standard on all MEGAS5 models, most
models (devkit, release boards and xemu, but NOT on Nexys boards currently) also
have an extra 8MB of RAM starting at $8000000, referred to as ‘ATTIC RAM'. It is not
visible to the other chips (vic/sid/etc) and can't be used for audio DMA, but code can
run from it (more slowly) or it can be used to store content and DMA it in/out of the
chip-RAM.

There are also plans underway to support a PMOD hyperRAM module (installed via the
trapdoor beneath the MEGAG5) in order to provide a further 8MB of RAM starting at
$8800000, referred to as 'CELLAR RAM'.

28-bit Address Space

In addition to the C65-style TMB address space, the MEGAS5 extends this to 256MB,
by using 28-bit addresses. The following shows the high-level layout of this address

space.

HEX DEC Size Contents

0000000 (O 1 CPU 1/O Port Data Direction Register

0000001 |1 1 CPU 1/O Port Data

0000002 .

C005FFFE | 2 - 384KB 384KB Fast chip RAM (40MHz)

0069000 | 384KB- 16MB| 15.6MB | Reserved for future chip RAM expansion

1000000

_ZFrrEER | 1OMB- 64MB | 48MB Reserved

4000000 | 64M8 - 64MB Cartridge port and other devices on the

- 7FFFFFF | 128MB
slow bus (1 - 10 MHz)

8000000 | 128MB -

_87FFFFF | 135MB 8MB 8MB ATTIC RAM (all models apart from
Nexys, presently)

8800000 | 12oMB- |amB 8MB CELLAR RAM (planned PMOD mod-
ule installed via trapdoor)

_92%9':?:?:2 ;jgxg - 96MB Reserved for future expansion RAM

_F?ZESSESF ggg,\z\l%A_AB 15.49MB | Reserved for future I/O expansion

FF7E000 - | 255.49MB - .

FE7EFFE | 255 49MB 4KB VIC-IV Character ROM (write only)

FF80000 - | 255.5MB -

FES87FFE | 255 53MB 32KB VIC'—IV Colour RAM (32KB colour RAM -
available on all models)

FF88000-1255.95MB- | 30k8 | Additional VIC-IV Colour RAM (64KB

FF8FFFF 255.57MB .
colour RAM - planned to be available on
R3 models and beyond)

FF?0000 - | 255.53MB -

FFCAFFF | 255.80m | 216KB |Reserved

FFCBOOO |255.80MB -

_FFCBFFE | 255.80MB 4KB Emulated C1541 RAM

FFCCO000 |255.80MB -

FROCR00 | 205808~ 116k |Emulated C1541 ROM

FFDOOOO |255.81MB - .

_FFDOFEF | 255.8 TMB 4KB Cé64 $Dxxx I/O Personality

FFD1000 |255.81MB - .

_FFDIFFE | 255 .82MB 4KB C65 $Dxxx |/O Personality

FFD2000 |255.82MB - .

_FFDOFFE | 255 89MB 4KB MEGAG&5 $Dxxx Ethernet |/O Personality

continued ...

..continued

HEX DEC Size Contents

FFD3000 |255.82MB - .

_FFD3FFF | 255 89MB 4KB MEGAG&5 $Dxxx Normal 1/O Personality

FFD4000 |255.82MB -

_FFDSFFF | 255.83MB | OKP Reserved

FFD6000 |255.83MB - .

_FFD&7FF | 255.83MB 2KB Hypervisor scratch space

FFD6000 |255.83MB - .

_ FFD&BFF | 255.83MB 3KB Hypervisor scratch space

FFD6CO0 |255.83MB -

_ FFDDFF | 255.83MB 512 FO11 floppy controller sector buffer

EEB?ESFO B gggggxg T 512 SD Card controller sector buffer

FFD7000 |255.83MB - .

_FFD70FF | 255.83MB 256 MEGAphone r1 12C peripherals

FFD7100 |255.83MB - .

_FFD71FE | 255.83MB 256 MEGAGS 12 12C peripherals

EEB;%?E_ gggggxg_ 256 MEGA&5 HDMI [2C registers (only for

‘ R2 and older models fitted with the

ADV7511 HDMI driver chip)

_FI;D%?;%?F ggggfmg " |3.25KB | Reserved for future 12C peripherals

FT:}D:ggg?F ggggzxg 16KB Hypervisor ROM (only visible in Hypervi-
sor Mode)

—FTZID:CD:SIC:)I?F gggg?ﬁg - | 8KB Reserved for Hypervisor Mode ROM ex-
pansion

EEBE??S B gggg;xg - |2KB Reserved for Ethernet buffer expansion

IEIEBEEI?FO B gggg;xg_ 2KB Ethernet frame read buffer (read only)

‘ and Ethernet frame write buffer (write

only)

IEEBEI?I?FO - gggg;xg_ 4KB Z:]rl’;;al FPGA registers (selected models

FFEOOO0O - | 255.87MB -

FEFEEFE | 256MB 128KB Reserved

$D00O - SDFFF 1/O PERSONALITIES

The MEGAG5 supports four different |/O personalities. These are selected by writing
the appropriate values to the $D02F KEY register, which is visible in all four /O per-
sonalities. There is more information in the MEGAS5 Book, Cé64, C65 and MEGAS5

Modes (chapter 11) about the use of the KEY register.

The following table shows which I/O devices are visible in each of these 1/O modes,
as well as the KEY register values that are used to select the 1/O personality.

MEGA65

HEX Cé64 Cé65 ETHERNET MEGA65
KEY $00 $A5, $96 $45, $54 $47, $53
$D000 - $D02F VIC-II VIC-II VIC-II VIC-II
$D030 - $DO7F VIC-II VIC-III VIC-III VIC-HI
$D080 - $DO8F VIC-II FOT1 FOT1 FOT1
$D090 - $DOYF VIC-II - SD card SD card
RAM EXPAND
$DOAO - $DOFF VIC-II CONTROL - -
$D100 - $D1FF VIC-II RED Palette | RED Palette | RED Palette
GREEN GREEN GREEN
$D200 - $D2FF Vic Palette Palette Palette
$D300 - $D3FF VIC-II BLUE Palette | BLUE Palette | BLUE Palette
$D400 - $D41F| SID Right #1 | SID Right #1 | SID Right #1 | SID Right #1
$D420 - $D43F | SID Right #2 | SID Right #2 | SID Right #2 | SID Right #2
$D440 - $D45F | SID Left #1 SID Left #1 SID Left #1 SID Left #1
$D460 - $D47F| SID Left #2 SID Left #2 SID Left #2 SID Left #2
$D480 - $DA9F | SID Right #1 | SID Right #1 | SID Right #1 | SID Right #1
$D4A0 - $D4BF | SID Right #2 | SID Right #2 | SID Right #2 | SID Right #2
$DACO-$DADF| SID Left #1 SID Left #1 SID Left #1 SID Left #1
$DAEOQ - $D4AFF | SID Left #2 SID Left #2 | SID Left #2 | SID Left #2
$D500 - $D5FF | SID images - Reserved Reserved
$D600 - $DS3F - UART UART UART
. HyperTrap HyperTrap
$D640 - $DSTF - UART images Registers Registers
$D680 - $DSFF - - MEG.A65 MEG.Aés
Devices Devices
MEGA65 MEGAG65
$D700 - $D7FF h B Devices Devices
COLOUR ETHERNET COLOUR
$D800 - $DBFF | COLOUR RAM RAM Buffer RAM
ClAs / ClAs /
$DCO0-$DDFF| ClAs colour | ETHERNET | colour
RAM urter RAM
ETHERNET | CART1/O/
$DEOQO - $DFFF CART I/O CART |/O Buffer SD SECTOR

T'In the C64 1/O personality, $D030 behaves as on C128, allowing
toggling between 1MHz and 2MHz CPU speed.
2 The additional MEGA65 SIDs are visible in all I/O personalities.

3 Some models may replace the repeated images of the first four
SIDs with four additional SIDs, for a total of 8 SIDs.

CPU MEMORY BANKING

The 45GS02 processor, like the 6502, can only “see” 64KB of memory at a time.
Access to additional memory is via a selection of bank-switching mechanisms. For
backward-compatibility with the Cé4 and C65, the memory banking mechanisms for
both of these computers are supported on the MEGA&5:

. C65-style MAP instruction banking
2. C65-style $D030 banking

3. Cé4-style cartridge banking

4. Cé4-style $00 / $01 banking

The MAP register overrides all other banking mechanisms. This mechanism selects
which of the eight 8KB regions of the 16-bit address space $0000 - $FFFF are
mapped to other addresses via an offset. If a region is mapped, then the other bank-
ing mechanisms do not apply. This is true even if the offset is 0, allowing the 16-bit
addresses to access RAM in bank 0 (such as address 0.D000).

C65-style $D030 banking and C64-style $00 / $01 banking both select regions to
map to bank 2, which (by default) contains C64 ROM code. These two mechanisms
overlap in which regions they can map to ROM. If either mechanism maps a region to
ROM (and it is not mapped elsewhere by the MAP register), then it is mapped to ROM.

j—

The following diagram shows the different types of banking that can apply to the
different areas of the 64KB that the CPU can see.

MAP MAP LO MAP HI
(4 x 8KB slabs) (4 x 8KB slabs)
|/O/CART
D030 CHARROM | BASIC
cé4 ‘
RAM | RAM | RAM RAM
$0000 - $8000 - $A000 - $C000 - $DO0O0 - $EO0QO -

$7FFF $OFFF $BFFF $CFFF $DFFF S$FFFF

There are actually a few further complications. For example, if the cartridge selects
the UtiIMAX™ game mode, then only the first 4KB of RAM will be visible, and the re-
maining address space will be un-mapped, and able to be supplied by the cartridge.

C64/C65 ROM EMULATION

The C64 and Cé5 use ROM memories to hold the KERNAL and BASIC system. The
MEGAGS is different: It uses 128KB of its 384KB fast chip RAM at $20000 - $3FFFF

10

(banks 2 and 3) to hold these system programs. This makes it possible to change or
upgrade the “ROM” that the MEGAG S is running, without having to open the computer.
It is even possible to use the MEGA&5's Freeze Menu to change the “ROM” being used
while a program is running.

The C64 and C65 memory banking methods use this 128KB of area when making ROM
banks visible. When the RAM banks are mapped, they are always read-only. However,
if the MAP instruction or DMA is used to access that address areq, it is possible to
write to it. For improved backward compatibility, the whole 128KB region of memory
is normally set to read-only.

A program can, however, request read-write access to this 128KB area of memory, so
that it can make full use of the MEGA&5's 384KB of chip RAM. This is accomplished by
triggering the Toggle Rom Write-protect system trap of the hypervisor. The following
code-fragment demonstrates how to do this. Calling it a second time will re-activate
the write-protection.

LDA #470
8Th $D640

NOP

This fragment works by calling sub-function $70 (toggle ROM write-protect) of Hyper-
visor trap $00. Note that the NPf is mandatory. The MEGASS5 1/O personality must be
first selected, so that the $D640 register is un-hidden.

The current write-protection state can be tested by attempting to write to this area of
memory. Also, you can examine and toggle the current state in the MEGAS5 Freeze
Menu.

NOTE: If you are starting your program from Cé5-mode, you must first make sure that
the I/O area is visible at $D000-$DFFF. The simplest way to do this is to use the MAP
instruction with all zero values in the registers. The following fragment demonstrates
this, and also makes sure that the MEGA65 1/O context is active, so that the hypervisor
trap will be able to trigger:

; Clear CBY memory map

LDa #5060

ThY

ThY

ThZ

HAP

; Bank I/0 in via CB4 mechanism

LDA #5335

§TA s01

; Do MEGABS 7 VIC-IV I/0 knock

LDA #4547

STh sDoz2f

LDA #5353

STA sDo2f

; End MAP sequence, thus allowing interrupts to occur again
EOH

; Do Hypervisor call to un-write-protect the ROM area
LDA #5780

STA $DG40

NOP

C65 Compatibility ROM Layout

The layout of the C65 compatibility 128KB ROM area is identical to that of the Cé65:

HEX Contents

$3E000 -- $3FFFF | C65 KERNAL

$3D000 -- $3DFFF | CHARSET B

$3C000 -- $3CFFF | RESERVED

$38000 -- $3BFFF |C65 BASIC GRAPHICS ROUTINES

$32000 -- $37FFF |C65 BASIC

$30000 -- $31FFF [MONITOR (gets mapped at $6000 -- $7FFF)
$2E000 -- $2FFFF | C64 KERNAL

$2D000 -- $2DFFF | CHARSET C

$2C000 -- $2CFFF | INTERFACE

$2A000 -- $2BFFF | C64 BASIC

$29000 -- $29FFF | CHARSET A

$24000 -- $28FFF | RESERVED

$20000 -- $23FFF |DOS (gets mapped at $8000 -- $BFFF)

The INTERFACE program is a series of routines that are used by the C65 to switch
between C64-mode, C65-mode and the Cé5’s built-in DOS. The DOS is located in
the lower-eighth of the ROM.

12

CHAPTER

VIC-IV Video Interface
Controller

Features
VIC-lI/llI/IV Register Access Control

Video Output Formats, Timing and

Compatibility
Memory Interface
Hot Registers
New Modes
Sprites

VIC-Ill Errata Level

® VIC-ll / C64 Registers
® VIC-lll / C65 Registers

® VIC-IV / MEGASG6S5 Specific Registers

15

16

The VIC-IV is a fourth generation Video Interface Controller developed especially for
the MEGA&S, and featuring very good backwards compatibility with the VIC-II that
was used in the Cé4, and the VIC-Ill that was used in the C65. The VIC-IV can be
programmed as though it were either of those predecessor systems. In addition it
supports a number of new features. It is easy to mix older VIC-II/Ill features with the
new VIC-IV features, making it easy to transition from the VIC-Il or VIC-Ill to the VIC-IV,
just as the VIC-IIl made it easy to transition from the VIC-Il. Some of the new features
and enhancements of the VIC-IV include:

Direct access to 384KB RAM (up from 16KB/64KB with the VIC-Il and 128KB
with the VIC-IlI).

Support for 32KB of 8-bit Colour/Attribute RAM (up from 2KB on the VIC-II),
to support very large screens.

HDTV 720 576 / 800 x 600 native resolution at both 50Hz and 60Hz for PAL
and NTSC, with VGA and digital video output.

8 1MHz pixel clock (up from ~ 8MHz with the VIC-II/Ill), which enables a wide
range of new features.

New 16-colour (16 x8 pixels per character cell) and 256-colour (8 x 8 pixels per
character cell) full-colour text modes.

Support for up to 8,192 unique characters in a character set.

Four 256-colour palette banks (versus the VIC-III's single palette bank), each
supporting 23-bit colour depth (versus the VIC-III's 12-bit colour depth), and
which can be rapidly alternated to create even more colourful graphics than is
possible with the VIC-III.

Screen, bitmap, colour and character data can be positioned at any address
with byte-level granularity (compared with fixed 1KB - 16KB boundaries with
the VIC-II/III).

Virtual screen dimensioning, which combined with byte-level data position
granularity provides effective hardware support for scrolling and panning in
both X and Y directions.

New sprite modes: Bitplane modification, full-colour (15 foreground colours
+ transparency) and tiled modes, allowing a wide variety of new and exciting
sprite-based effects.

The ability to stack sprites in a bit-planar manner to produce sprites with up to
256 colours.

Sprites can use 64 bits of data per raster line, allowing sprites to be 64 pixels
wide when using VIC-II/Ill mono/multi-colour mode, or 16 pixels wide when
using the new VIC-IV full-colour sprite mode.

17

+ Sprite tile mode, which allows a sprite to be repeated horizontally across an
entire raster line, allowing sprites to be used to create animated backgrounds
in a memory-efficient manner.

+ Sprites can be configured to use a separate 256-colour palette to that used
to draw other text and graphics, allowing for a more colourful display.

* Super-extended attribute mode which uses two screen RAM bytes and two
colour RAM bytes per character mode, which supports a wide variety of new fea-
tures including alpha-blending/anti-aliasing, hardware kerning/variable-
width characters, hardware horizontal/vertical flipping, alternate palette se-
lection and other powerful features that make it easy to create highly dynamic
and colourful displays.

* Raster-Rewrite Buffer which allows hardware-generated pseudo-sprites,
similar to “bobs” on Amiga™ computers, but with the advantage that they are
rendered in the display pipeline, and thus do not need to be un-drawn and re-
drawn to animate them.

Multiple 8-bit colour play-fields are also possible using the Raster-Rewrite
Buffer.

In short, the VIC-IV is a powerful evolution of the VIC-II/Ill, while retaining the character
and distinctiveness of the VIC-series of video controllers.

For a full description of the additional registers that the VIC-IV provides, as well as
documentation of the legacy VIC-Il and VIC-Il registers, refer to the corresponding
sections of this appendix. The remainder of the appendix will focus on describing the
capabilities and use of many of the VIC-IV's new features.

VIC-II/lll/IV REGISTER ACCESS
CONTROL

Because the new features of the VIC-IV are all extensions to the existing VIC-II/IIl de-
signs, there is no concept of having to select the mode in which the VIC-IV will operate:
It is always in VIC-IV mode. However, for backwards compatibility with software, the
many additional registers of the VIC-IV can be hidden, so that it appears to be either
a VIC-Il or VIC-III. This is done in the same manner that the VIC-Il uses to hide its new
features from legacy VIC-II software.

The mechanism is the VIC-IIl write-only KEY register ($D02F, 53295 decimal). The
VIC-IIl by default conceals its new features until a “knock” sequence is performed.
This consists of writing two special values one after the other to $D02F. The following
table summarises the knock sequences supported by the VIC-IV, and indicates which
are VIC-IV specific, and which are supported by the VIC-III:

18

First Value Second Value Effect VIC-IV
Hex (Decimal) |Hex (Decimal) Specific?

Only VIC-II registers
visible (all VIC-IIl and
VIC-IV new registers
are hidden)

\(IQ—III new registers No
visible

Both VIC-IIl and VIC-IV
new registers visible
No VIC-IT/M/IV
registers visible.

$45 (69) $54 (84) 45E100 Ethernet Yes
controller buffers are
visible instead

$00 (0) $00 (0) No

$A5 (165) $96 (150)

$47 (71) $53 (83) Yes

Detecting VIC-II/1lI/IV

Detecting which generation of the VIC-II/III/IV a machine is fitted with can be impor-
tant for programs that support only particular generations, or that wish to vary their
graphical display based on the capabilities of the machine. While there are many pos-
sibilities for this, the following is a simple and effective method. It relies on the fact
that the VIC-IIl and VIC-IV do not repeat the VIC-Il registers throughout the 1/O ad-
dress space. Thus while $D000 and $D 100 are synonymous when a VIC-Il is present
(or a VIC-III/IV is hiding their additional registers), this is not the case when a VIC-III
or VIC-IV is making all of its registers visible. Therefore presence of a VIC-III/IV can
be determined by testing whether these two locations are aliases for the same regis-
ter, or represent separate registers. The detection sequence consists of using the KEY
register to attempt to make either VIC-IV or VIC-IIl additional registers visible. If either
succeeds, then we can assume that the corresponding generation of VIC is installed.
As the VIC-IV supports the VIC-IIl KEY knocks, we must first test for the presence of a
VIC-IV. Also, we assume that the MEGASS5 starts in VIC-IV mode, even when running
C65 BASIC. Thus the test can be done in BASIC from either C64 or C65-mode as
follows:

0 REM IN CE5-MODE WE CANNOT SAFELY WRITE TO $DO2F, S50 WE TEST A DIFFERENT HAY
16 IF PEEK(4D018) AND 32 THEN GOTO 63
20 POKE 50080 ,1:POKE $DO2F ,71i:POKE $DO2F ,83

POKE $0060+236,0:1F PEEKC$D0606)=1 THEN PRINT"UIC-IV PRESENT":END

POKE 50000 ,1:POKE $DO2F ,163:POKE $DB2F ,158

POKE $D06O+256,0:1F PEEKC$D006)=1 THEN PRINT"VIC-TII PRESENT":END

PRINT "VIC-II PRESENT'":END

REM WE ASSUME WE HAVE A CB3 HERE
Ui=PEEK($0050):V2=PEEK($D030): V3=PEEK(5DB3D)

IF U102 0k U1€o03 OR V2{3U3 THEN PRINT "VIC-IV PRESENT":END
GOTD 48

19

Line 10 of this program checks whether the screen is a multiple of 2KB. As the screen
on the Cé4 is located at 1KB, this test will fail, and execution will continue to line 20.
Line 20 writes 1 to one of the VIC-II sprite position registers, 53248, before writing
the MEGAGS knock to the key register, 53295. Line 30 writes to 53248 + 256, which
on the Cé4 is a mirror of 53248, but on a MEGA&5 with VIC-IV 1/O enabled will be
one of the red palette registers. After writing to 53248 + 256, the program checks
if the register at 53248 has been modified by the write to 53248 + 256. If it has,
then the two addresses point to the same register. This will happen on either a C64 or
Cé5, but not on a computer with a VIC-IV. Thus if 53248 has not changed, we report
that we have detected a VIC-IV. If writing to 53248 + 256 did change the value in
register 53248, then we proceed to line 40, which writes to 53248 again, and this
time writes the VIC-IIl knock to the key register. Line 50 is like line 30, but as it appears
after a VIC-IIl knock, it allows the detection of a VIC-III. Finally, if neither a VIC-IV nor
VIC-IIl is detected, we conclude that only a VIC-Il must be present.

As the MEGAG5 is the only Cé4-class computer that is fitted with a VIC-IV, this can
be used as a de facto test for the presence of a MEGAS5 computer. Detection of a
VIC-IIl can be similarity assumed to indicate the presence of a C65.

VIDEO OUTPUT FORMATS, TIMING
AND COMPATIBILITY

Integrated Marvellous Digital Hookup™ (IMDH™) Digital Video
Output

The MEGAGS5 features VGA analog video output and Integrated Marvellous Digital
Hookup™ (IMDH™). This is different to existing common digital video standards in
several key points:

1. We didn't invent a new connector for it: We instead used the most common
digital video connector already in use. So your existing cables should work fine!

2. We didn’t make it purposely incompatible with any existing digital video stan-
dard. So your existing TVs and monitors should work fine!

3. We don't engage in highway-robbery for other vendors to use the IMDH™ dig-
ital video standard, by trying to charge them $10,000 every year, just for the
permission to be able to sell a single device. This means that the MEGAS5 is
cheaper for youl

4. The IMDH™ standard does not allow content-protection or other sovereignty
eroding flim-flam. If you produced the video, you can do whatever you like with
it!

20

Connecting to Naughty Proprietary Digital Video Standards

There are digital video standards that are completely backwards compared with
IMDH™. Fortunately because of IMDH™'s open approach to interoperability, these
should, in most cases, function with the MEGA&S5 without difficulty. Simply find a
video cable fits the IMDH™ connector on the back of your MEGAS5, and connect it to
your MEGAG5 and a TV, Monitor or Projector that has the same connector.

However, regrettably, not all manufacturers have submitted their devices for IMDH™
compliance testing with the MEGAS5 team. This means that some TVs and Monitors
are, unfortunately, not IMDH™ compliant. Thus while most TVs and Monitors will work
with the MEGAG5, you might find that you need to try a couple to get a satisfactory
result. If you do find a monitor that doesn’t work with the MEGA& 5, please let us know,
and also report the problem to the Monitor vendor, recommending that they submit
their devices for IMDH™ compliance testing.

The VIC-IV was designed for use in the MEGA65 and related systems, including the
MEGAphone family of portable devices. The VIC-IV supports both VGA and digital
video output, using the non-proprietary IMDH™ interface. It also supports parallel
digital video output suitable for driving LCD display panels. Considerable care has
been taken to create a common video front-end that supports these three output
modes.

For simplicity and accuracy of frame timing for legacy software, the video format is
normally based on the HDTV PAL and NTSC 720x576/480 (576p and 480p) modes
using a 27 MHz output pixel clock. This is ideal for digital video and LCD display panels.
However not all VGA displays support these modes, especially 720x 576 at S0Hz.

In terms of VIC-Il and VIC-IIl backwards compatibility, this display format has several
effects that do not cause problems for most programs, but can cause some differences
in behaviour:

1. Because the VIC-IV display is progressive rather than interlaced, two physical
raster lines are produced for each logical VIC-Il or VIC-ll raster line. This means
that there are either 63 or 5 cycles per logical double raster, rather than per
physical 576p/480p physical raster. This can cause some minor visual artefacts,
when programs make assumptions about where on a horizontal line the VIC is
drawing when, for example, the border or screen colour is changed.

2. The VIC-IV does not follow the behaviour of the VIC-IIl, which allowed changes
in video modes, e.g., between text and bitmap mode, on characters. Nor does
it follow the VIC-II's policy of having such changes take effect immediately. In-
stead, the VIC-IV applies changes at the start of each raster line. This can cause
some minor artefacts.

3. The VIC-IV uses a single-raster rendering buffer which is populated using the
VIC-IV's internal 8 1MHz pixel clock, before being displayed using the 27MHz
output pixel clock. This means that a raster lines display content tends to be
rendered much earlier in a raster line than on either the VIC-Il or VIC-IIl. This can
cause some artefacts with displays, particularly in demos that rely on specific
behaviour of the VIC-Il at particular cycles in a raster line, for example for effects

21

such as VSP or FLI. At present, such effects are unlikely to display correctly on
the current revision of the VIC-IV. Improved support for these features is planned
for a future revision of the VIC-IV.

4. The 1280%x200 and 1280x400 display modes of the VIC-IIl are not currently
supported, as they cannot be meaningfully displayed on any modern monitor,
and no software is known to support or use this feature.

Frame Timing

Frame timing is designed to match that of the 6502 + VIC-Il combination of the C64.
Both PAL and NTSC timing is supported, and the number of cycles per logical raster
line, the number of raster lines per frame, and the number of cycles per frame are
all adjusted accordingly. To achieve this, the VIC-IV ordinarily uses HDTV 576p S0Hz
(PAL) and 480p 60Hz (NTSC) video modes, with timing tweaked to be as close as
possible to double-scan PAL and NTSC composite TV modes as used by the VIC-II.

The VIC-IV produces timing impulses at approximately 1MHz which are used by the
45GS02 processor, so that the correct effective frequency is provided when operating
at the 1MHz, 2MHz and 3.5MHz C64, C128 and C45 compatibility modes. This allows
the single machine to switch between accurate PAL and NTSC CPU timing, as well as
video modes. The exact frequency varies between PAL and NTSC modes, to mimic the
behaviour of PAL versus NTSC Cé4, C128 and Cé5 processor and video timing.

The PAL frame is constructed from 624 physical raster lines, consisting of 864 pixel
clock ticks. The pixel clock is 27MHz, which is 1/3 the VIC-IV pixel clock. The visible
frame is 720x 576 pixels, the entirety of which can be used in VIC-IV mode. In VIC-II
and VIC-IIl modes, the border area reduces the usable size to 640x400 pixels. In
VIC-Il mode and VIC-IIl 200H modes, the display is double scanned, with two 31.5
micro-second physical rasters corresponding to a single 63 micro-second VIC-Il-style
raster line. Thus each frame consists of 312 VIC-Il raster lines of 63 micro-seconds
each, exactly matching that of a PAL C44.

22

864 Horizontal Ticks
(31.5 pSec per line)

Vertical Fly-Back Area

VIC-II/lll Border Area

576 Horiz-

Visible ontal 624

Lines Fly-Back| |Lines
Area

VIC-II/lll Border Area

A
Y

720 Visible Pixels

Y

The NTSC frame is constructed from 526 physical raster lines, consisting of 858 pixel
clock ticks. The pixel clock is 27MHz, which is 1/3 the VIC-IV pixel clock. The visible
frame is 720x 480 pixels, the entirety of which can be used in VIC-IV mode. In VIC-
II'and VIC-IIl modes, the border area reduces the usable size to 640x400 pixels.
In VIC-Il mode and VIC-IlIl 200H modes, the display is double scanned, with two 32
micro-second physical rasters corresponding to a single 64 micro-second VIC-Il-style
raster line. Thus each frame consists of 263 VIC-Il raster lines of 64 micro-seconds
each, matching the most common C64 NTSC video timing.

23

858 Horizontal Ticks
(32 pSec per line)

Vertical Fly-Back Area
VIC-II/lll Border Area

480 Horiz-

Visible ontal 526

Lines Fly-Back| |Lines
Area

VIC-II/lll Border Area

A
\

720 Visible Pixels

Y

As these HDTV video modes are not supported by all VGA monitors, a compatibility
mode is included that provides a 640x480 VGA-style mode. However, as the pixel
clock of the MEGAGSS5 is fixed at 27MHz, this mode runs at 63Hz. Nonetheless, this
should work on the vast majority of VGA monitors. There should be no problem with
the PAL / NTSC modes when using the digital video output of the MEGAS5 with the
vast majority of IMDH™-enabled monitors and TVs.

To determine whether the MEGAG&S is operating in PAL or NTSC, you can enter the
Freeze Menu, which displays the current video mode, or from a program you can check
the PALNTSC signal (bit 7 of $D06F, 53359 decimal). If this bit is set, then the machine
is operating in NTSC mode, and clear if operating in PAL mode. This bit can be modified
to change between the modes, e.g.:

24

REH ENABLE CES+MEGAGS 1/0

IF PEEK(5DO18) (32 THEN POKE $DO2F,ASC("G"):POKE $DO2F,ASC("S")

REM CHECK NTSC BIT

NTSC=PEEK($DOGF) AND 128

REM DISPLAY STATE AND ASK FOR TOGGLE

PRINT"HEGAGS IS IN ";:IF NTSC THEN PRINT"NTSC MODE":ELSE PRINT"PAL MODE"

INPUT"SHITCH MODES (¥/N)? ", A%
REM TOGGLE NTSC BIT
IF A$="Y" THEN POKE $DOGF,PEEK(4$DOGF) XOR 128:ELSE END
160 REM DISPLAY NEW STATE
110 NTSC=PEEKC$DOBGF) AND 128
120 PRINT"MEGAGS IS IN “;:IF NTSC THEN PRINT"NTSC MODE":ELSE PRINT"PAL MODE"

Physical and Logical Rasters

Physical rasters per frame refers to the number of actual raster lines in the PAL or NTSC
Enhanced Definition TV (EDTV) video modes used by the MEGAG5. Logical Rasters
refers to the number of VIC-ll-style rasters per frame. Each logical raster consists of
two physical rasters per line, since EDTV modes are double-scan modes compared
with the original PAL and NTSC Standard Definition TV modes used by the Cé4. The
frame parameters of the VIC-IV for PAL and NTSC are as follows:

Physical

Standard gycles per Rasters per Logical Rasters
aster F per Frame
rame
PAL 63 626 372
NTSC 65 526 263

The result is that the frames on the VIC-IV consist of exactly the same number of
~ 1MHz CPU cycles as on the VIC-II.

Bad Lines

The VIC-IV does not natively incur any “bad lines”, because the VIC-IV has its own
dedicated memory busses to the main memory and colour RAM of the MEGA&S5. This
means that both the processor and VIC-IV can access the memory at the same time,
unlike on the Cé4 or C65, where they are alternated.

However, to improve compatibility, the VIC-IV signals when a “bad line” would have
occurred on the VIC-II. The 45GS02 processor of the MEGAS5 accepts these bad line
signals, and pauses the CPU for 40 clock cycles, except if the processor is running at
full speed, in which case they are ignored. This improves the timing compatibility with
the VIC-Il considerably. However, the timing is not exact, because the current revision
of the 45GS02 pauses for exactly 40 cycles, instead of 40 - 43 cycles, depending
on the instruction being executed at the time. Also, the VIC-IV and 45GS02 do not
currently pause for sprite fetches.

25

The bad line emulation is controlled by bit 0 of $D7 10: setting this bit enables bad line
emulation, and clearing it prevents any bad line from stealing time from the processor.

The VIC-IV supports up to 16MB of direct access RAM for video data, however at
present, all existing models provide only 384KB of addressable RAM. In MEGASS5 sys-
tems, the second block of 128KB of RAM (spanning from 128KB-256KB in the memory
map) is typically used to hold a Cé5-compatible ROM, leaving 256KB of RAM avail-
able to the user. If software is written to avoid the need to use C65 ROM routines,
then the entire 384KB of RAM can be used by the program.

All MEGAS5 models presently support 32KB of colour RAM, however there are plans
for the latest R3 board to support 64KB of colour RAM (or possibly even 128KB).

The VIC-IV supports all legacy VIC-Il and VIC-IIl methods for accessing this RAM, in-
cluding the VIC-II's use of 16KB banks, and the VIC-IIlI's Display Address Translator
(DAT). This additional memory can be used for character and bitmap displays, as well

as for sprites. However, the VIC-Ill bitplane modes remain limited to using only the first
128KB of RAM, as the VIC-IV does not enhance the bitplane mode.

Startup Base Addresses

If no mappings are changed and no screen memory is relocated (see the following
paragraph for more on this) the base addresses can be used to place characters on
the screen and set colour and attributes accordingly:

+ $0800 Screen RAM
+ $ff80000 Colour RAM

These values are the upper left character on the screen no matter if in 40 or 80 column
mode. In BASIC you can use the dollar sign directly to use the hexadecimal format. For
a far better method in BASIC see the MEGAS5 Book, Screen Text and Colour Arrays
(subsection B) .

Relocating Screen Memory

To use the additional memory for screen RAM, the screen RAM start address can be
adjusted to any location in memory with byte-level granularity by setting the SCRNPTR
registers (30060 - $D063, 53344 - 53347 decimal). For example, to set the screen
memory to address 12345:

REM ENABLE C63+MEGAGS /0
IF PEEK(5D018) (32 THEN POKE $DO2F,ASC("G"):POKE 5D02F,ASC("S")

POKE 506D, 545:POKE 4$DOG1, $23:POKE $DO62,51

26

Relocating Character Generator Data

The location of the character generator data can also be set with byte-level precision
via the CHARPTR registers at $D068 - $D0SA (53352 - 53354 decimal). As usual,
the first of these registers holds the lowest-order byte, and the last the highest-order
byte. The three bytes allow for placement of character data anywhere in the first
16MB of RAM. For systems with less than 16MB of RAM accessible by the VIC-IV, the
upper address bits should be zero.

For example, to indicate that character generator data should be sourced beginning
at $41200 (266752 decimal), the following could be used. Note that the command
WPOKE can be used to write two bytes as a word into a memory or I/O location.
Therefore, we use WPOKE to write $00 into $D068 and $12 into $D069, and an
additional POKE to write the high byte $A into $D0SA by dividing the address by
6553%6:

REH ENABLE CE5+MEGAGS /0

IF PEEK(5DO18) (32 THEN POKE $DO2F,ASC("G"):POKE $DO2F,ASC("S")
REM HEX $41280 IS EASILY DIVIDED IN ITS 3 BYTES 500, $12, $4
REM WPOKE SETS THE LOWER TWD BYTES IN ONE COMMAND AND

REM THE FOLLOWING POKE SETS THE UPPER BYTE
f=541200

HPOKE $DOGS , A

POKE 5DO6A,A/65336

Relocating Colour / Attribute RAM

The area of colour RAM being used can be similarly set using the COLPTR registers
($D064 - $D065, 53348 - 53349 decimal). That is, the value is an offset from the
start of the colour / attribute RAM. This is because, like on the C64, the colour / at-
tribute RAM of the MEGASS is a separate memory component, with its own dedicated
connection to the VIC-IV. By default, the COLPTRs are set to zero, which replicates
the behaviour of the VIC-II/Ill. To set the display to use the colour / attribute RAM
beginning at offset $4000, one could use something like:

REM ENABLE C63+MEGAGS /0
IF PEEK(5D018)(32 THEN POKE $DO2F,ASC("G"):POKE $DB2F,ASC("S")
REM SET COLPTR TO 54680, SPLITS INTO 560 LSB and 540 MSB

POKE 5D064, 500
POKE 5D063 , 540

Relocating Sprite Pointers and Images

The location of the sprite pointers can also be moved, and sprites can be made to have
their data anywhere in first 4AMB of memory. This is accomplished by first setting the
location of the sprite pointers by setting the SPRPTRADR registers ($D04C - $DOSE,

27

53356 - 53358 decimal, but note that only the bottom 7 bits of $D0SE are used,
as the highest bit is used for the SPRPTR16 signal). This allows the list of eight sprite
pointers to be moved from the end of screen RAM to an arbitrary location in the first
8MB of RAM. SPRPTRADR must be aligned to a 16-byte boundary (a multiple of 16).

To allow sprites themselves to be located anywhere in the first 4MB of RAM, the
SPRPTR16 bit in $D0SE must be set. In this mode, two bytes are used to indicate
the location of each sprite, instead of one. That is, the list of sprite pointers will be
16 bytes long, instead of 8 bytes long as on the VIC-II/IIl. When SPRPTR16 is enabled,
the location of the sprite pointers should always be set explicitly via the SPRPTRADR
registers.

For example, to position the sprite pointers at location 800 - 815, you could use
something like the following code. Note that a little gymnastics is required to keep
the SPRPTR16 bit unchanged, and also to work around the AND binary operator not
working with values greater than 65535:

REH ENABLE C63+MEGAGS I/0
IF PEEK(5D018)¢(32 THEN POKE $DO2F ,ASC("G"):POKE $DO2F,ASC("S")
POKE 5DG6C ,(B00-INT(800/65536)%633536) AND 233

POKE $DOED, INT(800/236) AND 233
POKE $DBGE, (PEEK(SDOGE) AND 128)+INT(806/65536)

The location of each sprite image remains a multiple of 64 bytes, thus allowing for
up to 65,536 unique sprite images to be used at any point in time, if the system is
equipped with sufficient RAM (4MB or more). In this mode, the VIC-Il 16KB banking is
ignored, and the location of sprite data is simply 64 x the pointer value. For example,
to have the data for a sprite at $C000 (49 152 decimal), this would be sprite location
768, because 49152 divided by 64 = 768. We then need to split 768 into high and
low bytes, to set the two pointer bytes: 768 = 256 x 3, with remainder 0, so this would
require the two sprite pointer bytes to be 0 (low byte, which comes first) and 3 (high
byte). Thus if the sprite pointers were located at $7F8 (2040 decimal), setting the
first sprite to sprite image 768 could be done with something like:

POKE 2040 ,768-256%INT (768/236)
POKE 2041, INT(768/236)

Some VIC-IV registers support features similar to the VIC-Il and VIC-IIl, but with ex-
panded capabilities. For backwards compatibility, writing to specific VIC-Il and VIC-III
registers also causes related VIC-IV registers to reset with consistent values. This be-
havior can be configured with the HOTREG flag in bit 7 of $D05D.

For example, the lower four bits of register $D0 18 (CB) set the VIC-Il character set ad-
dress, as a multiple of 1 KiB. VIC-IV can locate the character set to any 24-bit address

28

using $D0SA (CHARPTRBNK), $D048 (CHARPTRLSB), and $D069 (CHARPTRMSB).
If you set CB, the VIC-IV registers will also be updated to match.

The complete set of VIC-Il “hot” registers that affect VIC-IV registers include:

« $D0 11 (53265): RB8, ECM, BMM, BLNK, RSEL, YSCL

« $D016 (53270): RST, MCM, CSEL, XSCL

- $D018 (53272): VS, CB
()

+ $D031 (53297): VIC-Ill modes: H640, FAST, ATTR, BPM, V400, H1280, MONO,
INT

« The VIC-II bank bits of $DD00 (56576) (CIA 2 PORTA)

Whenever any of those registers are modified, even by writing the existing value back
into them, all of the corresponding VIC-IV registers will be updated based on the VIC-
I register values, even those unrelated to the register that was written to. This includes
the FAST flag, which resides in a hot register byte location ($D03 1) but is unrelated
to video parameters and does not have a corresponding VIC-IV register.

The registers that are modified during this process are listed below. Note that some of
these registers are internal to the VIC-IV, and cannot be directly queried or modified
by the user. Where this is the case, no addresses are listed for the registers.

+ X position of the left side border edge. This internal register is updated set the
left side border to the width indicated in the Single Side Border Width registers
($D0O5C contains the LSB, and bits 0 - 5 of $D05D contain the MSB of the side
border width. Note that the width of the side border is based on the low-level
video frame dimensions, not the display screen size of the video mode. The
38/40 column field of $D016 is set to 38 columns, the left border edge will
appear 14 pixels to the right of its normal position.

+ X position of the right side border edge. This is the same as the left side
border edge, but for the right-hand edge of the screen. Note that if the 38/40
column flag is set to 38 columns, that the right border edge is moved 17 pixels
to the left of its normal position.

* Y position of the top border edge ($D048 LSB, bits 0 - 3 of $D049 MSB).
This internal register is set to the normal top position of the screen, minus the
value of the RASLINEO field in bits O - 5 of $DO6F. If the 24/25 rows field of
$DO 11 is set to 24 rows, then the edge of the top border will be lowed by 8
raster lines.

* Y position of the bottom border edge (SD04A LSB, bits 0 - 3 of $D04B MSB).
This internal register is set to the normal top position of the screen, plus 400
raster lines, to create the normal 400px tall primary display area within the bor-
ders. If the 24/25 rows field of $D0 11 is set to 24 rows, then the edge of the
top border will be raised by 8 raster lines.

29

+ Character Generator Vertical Scale (SDOS5B). This register is set to 0 for V200
or 1 for VA00 modes, to cause each row of pixels in a character to be either 1
or 2 pixels tall, respectively, according to the V400 flag.

* Number of character rows to display ($DO7B). This register is set to either
25-1=24 or 50-1 = 49 to display either 25 or 50 rows of text. Note that when
$DO0 11 is used to bring the vertical borders inwards to reduce the number of
visible character rows, that the VIC-IV still draws all 25 or 50 rows.

+ X Position Where Character Display Starts ($D04C LSB, bits O - 3 of $D04D
MSB). This register is set to a position relative to the edge of the 40-column
wide text display, plus 2x the smooth scrolling position indicated in $D0 16.

* Y Position Where Character Display Starts (SDO4E LSB, buts 0 - 3 of SDO4F
MSB). This register is set to the top edge of the vertical border, minus the VIC-II
First Raster adjustment register (bits 0 -5 of $D04F), plus any offset due to the
vertical smooth-scroll bits in $D011.

¢ Virtual Row Width ($D058 LSB, SD059 MSB), i.e., the number of bytes of
screen and colour RAM that the VIC-IV advances when displaying each
successive row of characters. This register is set to 40 if the H640 flag is
clear, or to 80 if the H640 flag is set, making the advance match the number of
characters to be displayed.

+ Display Row Width (SDOSE LSB, bits 4 - 5 of $D063 MSB). This register is set
to 40 if the H640 flag is clear, or to 80 if the H640 flag is set.

* Base Address of Screen RAM (SD060 - SD062, representing a 24-bit ad-
dress). This address is reset to the address as computed by reference to $D0 18
and $DDO00, as on the Cé4.

* VIC-II Sprite Pointer Address (SDO6C - SDO6E, representing a 24-bit ad-
dress). This register is reset to the normal location at the end of the screen
memory of the current mode. If the H640 flag is set, then this will be at the end
of 2KB screen RAM areq, or if the H640 flag is not set, it will point to the end of
the 1KB screen RAM areaq, as on a Cé4.

+ Character Set Base Address ($D068 - SDO6A, representing a 24-bit ad-
dress). Note that the hot register function sets only the lower 16 bits of the
character set address. That is, $D0SA is not cleared. This is an intentional
behaviour, that makes it easier to replace the character set in existing VIC-II-
oriented software with another character set in another bank of RAM.

+ Colour RAM Base Address ($D064 LSB, $D065 MSB). These registers are re-
set to zero, causing the VIC-IV to expect the colour RAM for the screen to be in
the first part of the colour RAM, to be compatible with the VIC-II and VIC-III.

This behavior of the VIC-Il registers is intended primarily for legacy software that is not
aware of (and therefore never writes to) VIC-IV registers. Hot register propagation can
be disabled by clearing the HOTREG (“hot register”) signal: bit 7 of $D05D (53341).

30

If you clear the HOTREG flag, you will need to update VIC-IV registers directly when
you wish to change video mode parameters.

If you make a change to a hot register while HOTREG is disabled then re-enable
HOTREG, all hot registers update immediately. There are rare cases where you might
want to make a change to a hot register without updating VIC-IV registers but also
want hot registers enabled after the change. To do this, you can cancel the pending
update by writing a 0 to HOTREG again just before re-enabling hot registers. The full
procedure is:

1. Write 0 to HOTREG to disable hot registers.

2. Update the VIC-Il register you want to change.

3. Write 0 to HOTREG to cancel the pending update.
4. Write 1 to HOTREG to re-enable hot registers.

In assembly language:

#/10000000
$dB3d ; disable hot registers

#/01000000
§d031 ; update a VIC-II/IIT register

#/10000000
$dB3d ; clear pending update
$d054d ; re-enable hot registers

Why the new VIC-IV modes are Character and Bitmap modes, not
Bitplane modes

The new VIC-IV video modes are derived from the VIC-Il character and bitmap modes,
rather than the VIC-IIl bitplane modes. This decision was based on several redlities of
programming a memory-constrained 8-bit home computer:

1. Bitplanes require that the same amount of memory is given to each area on
screen, regardless of whether it is showing empty space, or complex graphics.
There is no way with bitplanes to reuse content from within an image in another
part of the image. However, most C64 games use highly repetitive displays, with
common elements appearing in various places on the screen, of which Boulder
Dash and Super Giana Sisters would be good examples.

2. Bitplanes also make it difficult to update a display, because every pixel is unique,
in that there is no way to make a change, for example to the animation in an

31

onscreen element, and have it take effect in all places at the same time. The
diamond animations in Boulder Dash are a good example of this problem. The
requirement to modify multiple separate bytes in each bitplane create an in-
creased computational burden, which is why there were calls for the Amiga AAA
chip-set to include so-called “chunky” modes, rather than just bitplane based
modes. While the Display Address Translator (DAT) and DMAgic of the C65 pro-
vide some relief to this problem, the relief is only partial.

3. Scrolling using the C&5 bitplanes requires copying the entire bitplane, as the
hardware support for smooth scrolling does not extend to changing the bitplane
source address in a fine manner. Even using the DMAgic to assist, scrolling a
320x200 256-colour display requires 128,000 clock cycles in the best case
(reading and writing 320x200 = 64000 bytes). At 3.5MHz on the Cé5 this
would require about 36 milli-seconds, or about 2 complete video frames. Thus
for smooth scrolling of such a display, a double buffered arrangement would be
required, which would consume 128,000 of the 131,072 bytes of memory.

In contrast, the well known character modes of the VIC-Il are widely used in
games, due to their ability to allow a small amount of screen memory to select
which 8 x 8 block of pixels to display, allowing very rapid scrolling, reduced mem-
ory consumption, and effective hardware acceleration of animation of common
elements. Thus the focus of improvements in the VIC-IV has been on character
mode. As bitmap mode on the VIC-Il is effectively a special case of character
mode, with implied character numbers, it comes along free for the ride on the
VIC-IV, and will only be mentioned in the context of a very few bitmap-mode
specific improvements that were trivial to make, and it thus seemed foolish to
not implement, in case they find use.

Displaying more than 256 unique characters via “Super-Extended
Attribute Mode”

The primary innovation is the addition of the Super-Extended Attribute Mode. The
VIC-Il already uses 12 bits per character: Each 8 x 8 cell is defined by 12 bits of data:
8 bits of screen RAM data, by default from $0400 - $07E7 (1024 - 2023 decimal),
indicating which characters to show, and 4 bits of colour data from the 1K nibble
colour RAM at $D800 - $DBFF (55296 - 56319 decimal). The VIC-IIl of the C45
uses 16 bits, as the colour RAM is now 8 bits, instead of 4, with the extra 4 bits of
colour RAM being used to support attributes (blink, bold, underline and reverse video).
It is recommended to revise how this works, before reading the following. A good
introduction to the VIC-II text mode can be found in many places. Super-Extended
Attribute mode doubles the number of bits per character used from the VIC-llI's 16,
to 32: Two bytes of screen RAM and two bytes of colour/attribute RAM.

Super-Extended Attribute Mode is enabled by setting bit 0 in $D054 (53332 decimal).
Remember to first enable VIC-IV mode, to make this register accessible. When this bit
is set, two bytes are used for each of the screen memory and colour RAM for each
character shown on the display. Thus, in contrast to the 12 bits of information that
the Cé4 uses per character, and the 16 bits that the VIC-IIl uses, the VIC-IV has 32

32

bits of information. How those 32 bits are used varies slightly among the particular
modes, as described in the following tables, including whether the GOTOX bit is set.

Note also that enabling BOLD and REVERSE attributes at the same time on the
MEGAG5 selects an alternate palette, effectively allowing 512 colours on screen, but
each 8x8 character can use colours only from one 256 colour palette.

33

Default Bit Fields (when GOTOX bit is cleared):

| Bit(s) [Function when GOTOX bit is cleared

Screen RAM byte 0

Bits 7 - 0 | Low byte of character number, the same as the VIC-Il and VIC-II|

Screen RAM byte 1

Bits 7 - 5 | Trim pixels from right-hand side of character (bits 0 - 2)

Upper 5 bits of character number (bits 8 - 12), allowing

Bits 4 -0 addressing of 8,192 unique characters
Colour RAM byte 0

Bit 7 Vertically flip the character

Bit 6 Horizontally flip the character

Enable alpha blend mode, pixel values are treated as alpha values
Bit 5 blending between foreground colour and background colour
(needs bit 7 of $d054 set)

GOTOX is cleared (set to 0)
GOTOX allows repositioning of characters along a raster via the
Raster-Rewrite Buffer, discussed later). Must be set to 0 for

Bit 4 displaying characters - when set, it moves the position where the
next character will be drawn, without actually drawing anything.
See the following table for more explanation of this mode.
If set, Full-Colour characters use 4 bits per pixel and are 16 pixels
Bit wide (less any right-hand side trim bits), instead of using 8 bits per

pixel. When using 8 bits per pixels, the characters are the normal
8 pixels wide

Bit 2 Trim pixels from right-hand side of character (bit 3)

Bits 1 -0 | Number of pixels to trim from top or bottom of character

Colour RAM byte 1

If VIC-Il multi-colour mode is enabled:

Bits 7 - 4 | Upper 4 bits of colour of character

If VIC-IIl extended attributes are enabled:

Bit 7 Hardware underlining of character

Bit 6 Hardware bold attribute of character *

Bit 5 Hardware reverse video enable of character *
Bit 4 Hardware blink of character

Remaining bit-field is common:

Bits 3-0 ‘ Low 4 bits of colour of character

34

Bit Fields when GOTOX bit is set:

| Bit(s) [Function when GOTOX bit is set
Screen RAM byte 0
Lower 8 bits of new X position to start drawing the next character,
Bits 7 - 0 relative to the start of character drawing. Setting to 0 causes the
next character to be drawn over the top of the left-most
character.
Screen RAM byte 1
FCM Character data Y offset: Characters display normally when
Bits 7 - 5 set to zero. When non-zero, 8 x the value is added to the
character address. With careful planning, this can be used to
smoothly vertically scroll multiple layers of RRB content.
Bits 4 - 3 | RESERVED, set to 0
Bi Upper 2 bits of new X position (Highest bit is 2's complement
its 1-0 |~)
signed bit)
Colour RAM byte 0
Bit 7 If set, then background/transparent pixels will not be drawn for
subsequent characters, allowing layering
It set, the following characters will be rendered as background,
Bit 6 allowing sprites to appear in front of them, even when sprites are
set to background.
Bit 5 RESERVED, set to 0
Bit 4 GOTOX, set to 1. GOTOX allows repositioning of characters
along a raster via the Raster-Rewrite Buffer, discussed later).
ROWMASK. If set, then the pixel row mask is used to determine
which pixel rows of the following characters should be rendered.
This can be used to vertically scroll characters using the
Raster-Rewrite Buffer, by drawing each character twice, once
Bit 3 shifted down on the screen line on which it appears, and a second
time, shifted up in the following screen line, and masked so that
only the pixel rows belonging to the scrolled character are
displayed, and not data from either before or after that
character’s data.
) If set, the following characters will be drawn as foreground,
Bit 2 : : . :
regardless of their colour, allowing sprites to appear behind them.
Bits 1 -0 | RESERVED, set to O
Colour RAM byte 1
Bits 7 - 0 | Pixel row mask flags

We can see that we still have the Cé4 style bottom 8 bits of the character number
in the first screen byte. The second byte of screen memory gets five extra bits for
that, allowing 2! = 8,192 different characters to be used on a single screen. That's
more than enough for unique characters covering an 80x 50 screen (which is possible
to create with the VIC-IV). The remaining bits allow for trimming of the character.

35

This allows for variable width characters, which can be used to do things that would
not normally be possible, such as using text mode for free horizontal placement of
characters (or parts thereof). This was originally added to provide hardware support
for proportional width fonts.

For the colour RAM, the second byte (byte 1) is the same as the C645, i.e., the lower
half providing four bits of foreground colour, as on the Cé64, plus the optional VIC-
Il extended attributes. The C&5 specifications document describes the behaviour
when more than one of these are used together, most of which are logical, but there
are a few combinations that behave differently than one might expect. For example,
combining bold with blink causes the character to toggle between bold and normall
mode. Bold mode itself is implemented by effectively acting as bit 4 of the foreground
colour value, causing the colour to be drawn from different palette entries than usual.

However, if you do not need VIC-IIl extended attributes, you can instead use the upper
four bits of the second byte of colour RAM to contain more bits for the colour index,
allowing selection from the full range of 256 colour entries. This mode is activated by
enabling the VIC-II's multi-colour mode while full-colour mode is active.

The C65 / VIC-IIl attributes and the use of 256 colour 8-bit values for various VIC-II
colour registers is enabled by setting bit 5 of $D03 1 (53297 decimal). Therefore this
is highly recommended when using the VIC-IV mode, as otherwise certain functions
will not behave as expected. Note that BOLD+REVERSE together has the meaning of
selecting an alternate palette on the MEGASS5, which differs from the C65.

Many effects are possible due to Super-Extended Attribute Mode. A few possibilities
are explained in the following sub-sections.

Using Super-Extended Attribute Mode

Super-Extended Attribute Mode requires double the screen RAM and colour RAM as
the VIC-II/Ill text modes. This is because two bytes of each are required to define each
character, instead of one. The screen RAM can be located anywhere in the 384KB of
main memory using registers $D060 - $D062 (53344 - 53346 decimal). The colour
RAM can be located anywhere in the 32KB colour RAM. Only the first 1 or 2KB of
the colour RAM is visible at $D800 - $DBFF or $D800 - $DFFF (if the CRAM2K signall
is set in bit 0 of $D030, 53296 decimal). Thus if using a screen larger than 40x25
characters use of the DMA controller or some other means is required to access the full
amount of colour RAM. Therefor we will initially discuss using Super-Extended Attribute
Mode with a 40x25 character display.

The first step is to enable the Super-Extended Attribute Mode by asserting the FCLRHI
and CHRI & signals, by setting bits 2 and 0 of $D054 (53332 decimal). As this is
a VIC-IV register, we must first enable the VIC-IV I/O mode. The VIC-IV must also
be configured to 40 column mode, by clearing the H640 signal by clearing bit 7 of
$D03 1 (53297 decimal). This is because each pair of characters will be used to form
a single character on screen, with one character requiring two screen RAM bytes, thus
80 screen RAM bytes are required to display 40 characters. Similarly 80 colour RAM
bytes are required as well.

36

To understand this visually, it is helpful to first consider the normal C64 screen memory
layout:

5400[s401 [$410[$411 54 15[$416[$417 [34 420 $421,
15430[s431 15440 [$441
I5450[s451 15460 [$461 [s470[8471 [s472[8473[8474 [s475[s476 [8477]
5478|5470 |$a7a] 8470 |847¢ [sa7d[sa7e |sa71 |sago]sas 15490 |01
Is4a0[s4a1 540 [s4b1 [s4c0 [sac1
Isado|sad1 5420 sde1
[s410 |sat1 [sar2 [sa13 [sata [sars [safs [sar7 [sate [sato [sata [safb [safc [satd [sate [satr [ss00 [ss01 [s510[$511, 7)
Is520[ss21 5530|8531
Is540[s541 5550 (5551 5603561
s570[s571 15580 3581
Is500[ss501 5520 s5a1 s500ssb1
550 |s5c1 5500 [$501
Is5e0[sse1 15510 8511 8512 [35¢3 [s5t4 [ssf5 [sst6 [s5t7 [sste [ssto |ssa [ssib [sstc [ssfd Jsste [ssif [s600[s601
Is610[s611 5620|8621
6303631 15640 [$641 5650 |$651
Is660[s661 15670 [$671
Is680s681 15690 [s691 56a0s6a1
6b0|36b1 s6c0 [s6c1
Is6do|s6d1 15620 [s6e1 [ssto [ser1 [sef2 [sof3 [sea [sofs [sote [ser7
s618 [ssto [sefa [se [sefc [sefd [sste [seff [700]s701] [5710[$711|s712(5713[s714[s715[5716 |$717|s718 5719 [s71a[s71b[$71c [$71d [s71e [$711
Is720[s721 15730 [$731 [s740]$741,
5750|5751 [s760[s761
Is770[s771 s 4 5776 85 a[s77b[s77c [s77d[s77e|s77¢ [$780[5781] 57905791,
Is720[s7a1 15700 [$7b1
Is7c0[s7c1 570 $7d1 [s7e0|s7e1,

That is, each character cell uses one byte of screen RAM, and the addresses increase
smoothly, both within lines, and between lines. Super-Extended Attribute Mode re-
quires two bytes per character cell. So if you set $D054 to $05, for example, you will
get screen addresses like this:

37

412 [sata |s4t6 s4fs [safa [safc [safe

5410 |412 [$414 [saf6 [sais [s4fa [sarc [sate

s5f2 [s5t4 8516 [ssf8 [ssfa [s5fc [sste

[$512 [s514 [s516 858 [$5ta [ssic [sste

s

[s6f2 |s6i4 |s6f6

5612 |3614 9616 [s6f8 [s6fa [$6fc [s6fe 108712 87145716 [$718 [$71as71c [$71e]

Is6f8 |s6fa [s6c [sofe 10[$712[s714/5716[$718[s71a571c 87

a|s776|5778[$77as77¢ [$7

3712 |714 |$7f6 |$718 [s7fa [$7ic [$7fe

There are two things to notice in the above table: First, the address advances by
two bytes for each character cell, because two bytes are required to define each
character. Second, the start address of each screen line still only advances by 40
($28 in hexadecimal). This isn't what we really want, because it means that half of
the previous row will get displayed again on each current row. This is fixed by setting
the number of bytes to advance each screen row in $D058 (LSB) and $D059 (MSB).
So in this case, we want to increase the number of bytes skipped each line from 40
bytes, to 80 bytes, which we can do by setting $D058 to 80 ($50 in hexadecimal),
and $D059 to 0. This gives us a screen layout like this:

38

5410 |412 [$414 [saf6 [sais [s4fa [sarc [safe

[s512 [s514 [s516 858 [s5ta [ssic [sste

3612 |s614 9616 [s6f8 |s6fa [$6ic [s6fe 10[$712[3714/$716|$718[$71a571c [$71e

[$712 |s714 |$716 |$718 [s71a [$7ic [$7fe

[$812 [s81a |s8i6 |$8r8 [ssfa [ssic [ssfe

I59f0 |s9f2 [$914 [sof6 [sofs [sofa [sofc [sofe s:

saf2 [saf4 [$af6 [saf8 [safa [safc [safe

[sbce|

It is possible to use Super-Extended Attribute Mode from Cé5-mode, by setting the
screen to 80 columns, as the C65 ROM sets up 2KB for both the screen RAM and
colour RAM, and this automatically sets $D058 and $D059 to the correct value for
40x 2 = 80 bytes per screen line. The user need only to treat each character pair as a
single Super-Extended Attribute character, and to enable Super-Extended Attribute
Mode, as described above.

Because pairs of colour RAM and screen RAM bytes are used to define each character,
care must be taken to initialise and manipulate the screen. A good approach is to set
the text colour to black, because this is colour code 0, and then to fill the screen with
@ characters, because that is character code 0. You can then have several ways to
manipulate the screen. You can use the normal PRINT command and carefully construct
strings that will put the correct values into each screen and colour byte pair. Another
approach is to use the BANK and POKE commands to directly set the contents of the
screen and colour RAM.

Managing a Super-Extended Attribute Mode screen in this way using BASIC 65 is
of course rather a hack, and is only suggested as a relatively simple way to begin
experimenting. You will almost certainly want to quickly move to using custom screen
handling code, most probably in assembly, to manipulate Super-Extended Attribute
Mode screens, although this approach of using BASIC 65 can be quite powerful, by
allowing use of existing screen scrolling and other manipulations.

XXX Example program

The following descriptions assume that you have implemented one of the methods
described above to set the screen and colour RAM.

39

Full-Colour (256 colours per character) Text Mode (FCM)

In normal VIC-II/Ill text mode, one byte is used for each row of pixels in a character.
As a reminder for how those modes work, in hi-res mode, each pixel is either the back-
ground or foreground colour, based on the state of one bit in the byte. Multi-colour
mode uses two bits to select between four possible colours, but as there are still only
8 bits to describe each row of 8 pixels, each pair of pixels has the same colour. The
VIC-IV's full-colour text mode removes these limitations, and allows each pixel of a
character to be chosen from the 256 colour of either the primary or alternate palette
bank, without sacrificing horizontal resolution.

To do this, each character now requires 64 bytes of data. The address of the data
is 64 x the character number, regardless of the character set address. FCM should
normally be used with Super-Extended Attribute Mode (SEAM), so that more than 256
unique characters can be address. As SEAM allows the selection of 8,192 unique
characters, this allows FCM character data to be placed anywhere in the first 512KB
of chip RAM (but note that most models of the MEGAS5 have only 384KB of chip RAM).

Please note that the pixel value $ff will not select the corresponding colour code di-
rectly. Instead, it will select the colour code defined by the colour RAM.

Nibble-colour (16 colours per character) Text Mode (NCM)

The Nibble-Colour Mode (NCM) for text is similar to Full-Colour Text Mode, except that
each byte of data describes two pixels using 4 bits each. This makes the NCM unique,
because the characters will be 16 pixels wide, instead of the usual 8 pixels wide.
This can be used to create colourful displays, without using as much memory as FCM,
because fewer characters are required to cover the screen. Unlike the VIC-II's MCM,
this mode does not result in a loss of horizontal resolution.

In NCM the lower four bits of the pixel colour comes from the upper or lower four bits of
the pixel data. The upper four bits of the colour code come from the colour RAM data
for the displayed character. This makes it possible to use all palette entries in NCM,
although the limitation of 16 colours per character remains. Similar to the behaviour
of FCM, the pixel data value $f will select the pixel colour set in the colour RAM.

A further advantage of NCM is that it uses fewer bus cycles per pixel than FCM, be-
cause fewer character data fetches need to occur per raster line. Together with the
reduced memory requirements, this makes NCM particularly useful for creating colour-
ful multiple layers of graphics. This allows the VIC-IV to display arcade style displays
with more colours than many 16-bit computers.

XXX

Alpha-Blending / Anti-Aliasing

The VIC-IV supports blending of characters with the background colour, enabling ef-
fects such as anti-aliased font rendering. Blending is possible on a per character basis.
It is enabled for a specific character if the following conditions are met:

40

1. The ALPHAEN signal is set in bit 7 of $D054.

2. The CHRI 6 signal is set in bit 0 of $D054 to enable Super-Extended Attribute
Mode (SEAM).

3. Full-Colour Text Mode (FCM) is enabled for the character.

If alpha-blending is enabled for a character, its 8-bit pixel values are treated as alpha
values instead of palette indices. The actual pixel colour is determined by blending
the background colour with the character’s foreground colour defined in the colour
RAM. An alpha value of 0 represents full transparency, showing only the background
colour for that pixel.

Note that the alpha-blending is only applied between the background colour and the
character’s foreground colour. This means that any characters behind the current
character will effectively not be visible (character layers can be composed by using
GOTOX repositioning). However, programmers should assume that blending with pre-
vious layers will be supported in a future implementation. To avoid issues with such
a change you should not put any characters behind a character with alpha-blending
enabled.

Flipping Characters
XXX

Variable Width Fonts

There are 4 bits that allow trimming pixels from the right edge of characters when they
are displayed. This has the effect of making characters narrower. This can be useful
for making more attractive text displays, where narrow characters, such as “i" take
less space than wider characters, such as “m”, without having to use a bitmap display.
This feature can be used to make it very efficient to display such variable-width text

displays - both in terms of memory usage and processing time.

This feature can be combined with full-colour text mode, alpha blending mode and
4-bits per pixel mode to allow characters that consist of 15 levels of intensity between
the background and foreground colour, and that are up to 16 pixels wide. Further,
the GOTO bit can be used to implement negative kerning, so that character pairs like
A and T do not have excessive white space between them when printed adjacently.
The prudent use of these features can result in highly impressive text display, similar to
that on modern 32-bit and 64-bit systems, but that are still efficient enough to be im-
plemented on a relatively constrained system such as the MEGAS5. The “MegaWAT!?”
presentation software for the MEGAS5 uses several of these features to produce its
attractive anti-aliased proportional text display on slides.

XXX MEGAWat!? screenshot
XXX Example program

41

Raster Re-write Buffer

If the GOTO bit is set for a character in Super-Extended Attribute Mode, instead of
painting a character, the position on the raster is back-tracked (or advanced forward
to) the pixel position specified in the low 10 bits of the screen memory bytes. If the
vertical flip bit is set, then this has the alternate meaning of preventing the background
colour from being painted. This combination can be used to print text material over
the top of other text material, providing a crude supplement to the 8 hardware sprites.
The amount of material is limited only by the raster time of the VIC-IV. Some experi-
mentation will be required to determine how much can be achieved in PAL and NTSC
modes.

If the GOTO bit is set for a character, and the character width reduction bits are also
set, they are interpretted as a Y offset to add to the character data address, but
only in Full Colour Mode. Setting Y=1 causes the character data to be fetched from
8 bytes later, i.e., the first row of character data will come from the address where
the second row of character data would normally be fetched. Similary for increased
values the character data will be fetched from further character rows. With careful
arrangement of characters in memory, it is possible to use this feature to provide free
vertical placement of soft sprites, without needing to copy the character data.

If the GOTO bit is set for a character, and the Nybl Colour Mode (NCM) bit is also
set, then the second colour RAM byte for that character is used to set the Row Mask
bits. For each bit set in the row mask, the corresponding row of characters in the line
will not be displayed. This can be used in combination with the Y offset feature to
effectively provide a character by character smooth vertical scrolling function.

This ability to draw multiple layers of text and graphics is highly powerful. For example,
it can be used to provide multiple overlapping layers of separately scrollable graphics.
This gives many of the advantages of bitplane-based play-fields on other computers,
such as the Amiga, but without the disadvantages of bitplanes.

A good introduction to the Raster Re-write Buffer and its uses can be found in this
video:

https://www.youtube.com/watch?v=00bm5uBeBos&feature=youtu.be

One important aspect of the RRB, is that the VIC-IV will display only the character
data to the left of, and including, the last drawn character. This means that if you use
the GOTO token to overwrite multiple layers of graphics, you must either make sure
that the last layer reaches to the right-hand edge of the display, or you must include
a GOTO token that moves the render position to the right-hand edge of the display.

XXX Example program

42

https://www.youtube.com/watch?v=00bm5uBeBos&feature=youtu.be

VIC-II/Ill Sprite Control

The control of sprites for C64 / VIC-II/Ill compatibility is unchanged from the C64. The
only practical differences are very minor. In particular the VIC-IV uses ring-buffer for
each sprites data when rendering a raster. This means that a sprite can be displayed
multiple times per raster line, thus potentially allowing for horizontal multiplexing.

Extended Sprite Image Sets

On the VIC-Il and VIC-Ill, all sprites must draw their image data from a single 16KB
region of memory at any point in time. This limits the number of different sprite images
to 256, because each sprite image occupies 64 bytes. In practice, the same 16KB
region must also contain either bitmap, text or bitplane data, considerably reducing
the number of sprite images that can be used at the same time.

The VIC-IV removes this limitation, by allowing sprite data to be placed anywhere in
memory, although still on é4-byte boundaries. This is done by setting the SPRPTR16
signal (bit 7, $D06SE, decimal 53358), which tells the VIC-IV to expect two bytes per
sprite pointer instead of one. These addresses are then absolute addresses, and ignore
the 16KB VIC-Il bank selection logic. Thus 16 bytes are required instead of 8 bytes.
The list of pointers can also be placed anywhere in memory by setting the SPRPTRADR
($D06C -$D06D, 53356 - 53357 decimal) and SPRPTRBNK signals (bits 0 - &, $DOSE,
53358 decimal). This allows for sprite data to be located anywhere in the first 4MB of
RAM, and the sprite pointer list to be located anywhere in the first 8MB of RAM. Note
that typical installations of the VIC-IV have only 384KB of connected RAM, so these
limitations are of no practical effect. However, the upper bits of the SPRPTRBNK signal
should be set to zero to avoid forward-compatibility problems.

One reason for supporting more sprite images is that sprites on the VIC-IV can require
more than one 64 byte image slot. For example, enabling Extra-Wide Sprite Mode
means that a sprite will require 8x21 = 168 bytes, and will thus occupy four VIC-II
style 64 byte sprite image slots. If variable height sprites are used, this can grow to
as much as 8x255 = 2,040 bytes per sprite.

Variable Sprite Size

Sprites can be one of three widths with the VIC-IV:
1. Normal VIC-Il width (24 pixels wide).

2. Extra Wide, where 64 bits (8 bytes) of data are used per raster line, instead of
the VIC-II's 24. This results in sprites that are 64 pixels wide, unless Full-Colour
Sprite Mode is selected for a sprite, in which case the sprite will be 64 bits + 4
bits per pixel = 16 pixels wide.

43

3. Tiled mode, where the sprite is drawn repeatedly until the end of the raster line.
Tiled mode should normally only be used with Extra Wide sprite mode, as the
tiling always occurs using 64 bits of sprite data per line. Enabling tiled mode
with normal 24 bit wide mono or multi-colour sprite data will draw 2 and 2/3
rows of sprite data as a single row, even if the given sprite is not in Extra Wide
mode, resulting in garbled displays.

To enable a sprite to be 64 pixels (or 16 pixels if in Full-Colour Sprite Mode), set the
corresponding bit for the sprite in the SPRX44EN register at ($D057, 53335 decimal).
Enabling Full Colour mode for a sprite implicitly enables extended width mode, causes
these sprites to be 16 pixels wide.

Similarly, sprites can be various heights: Sprites will be either the 21 pixels high of
the VIC-Il, or if the corresponding bit for the sprite is enabled in the SPRHGTEN signall
($D055, 53333 decimal), then that sprite will be the number of pixels tall that is set in
the SPRHGT register ($D056, 53334 decimal), from 0 to 255. Notice that all sprites
with SPRHGTEN enabled share the same height. A sprite can always leave the bottom
of its image data transparent.

To enable tiled mode for a sprite, set the corresponding bit of SPRTILEN. For sprites 0
through 3, set bits 4 through 7 of $D04D (53325 decimal). For sprites 4 through 7,
set bits 4 through 7 of $D04F (55327 decimal).

Variable Sprite Resolution

By default, sprites are the same resolution as on the VIC-Il, i.e., each sprite pixel is
two physical pixels wide and high. However, sprites can be made to use the native
resolution, where sprite pixels are one physical pixel wide and/or high. This is achieved
by setting the relevant bit for the sprite in the SPRENV400 ($D076, 53366 decimal)
registers to increase the vertical resolution on a sprite-by-sprite basis. The horizontal
resolution for all sprites is either the normal VIC-II resolution, or if the SPR640 signal
is set (bit 4 of $D054, 53332 decimal), then sprites will have the same horizontal
resolution as the physical pixels of the display.

Sprite Palette Bank

The VIC-IV has four palette banks, compared with the single palette bank of the VIC-
lll. The VIC-IV allows the selection of separate palette banks for bitmap /text graphics
and for sprites. This makes it easy to have very colourful displays, where the sprites
have different colours to the rest of the display, or to use palette animation to achieve
interesting visual effects in sprites, without disturbing the palette used by other ele-
ments of the display.

The sprite palette bank is selected by setting the SPRPALSEL signal in bits 2 and 3 of
the register $D070 (53360 decimal). It is possible to set this to the same bank as
the bitmap/text display, or to select a different palette bank. Palette bank selection
takes effect immediately. Don't forget that to be able to modify a palette, you have
to also bank it to be the palette accessible via the palette bank registers at $D100 -
$D3FF by setting the MAPEDPAL signal in bits é and 7 of $D070.

44

Full-Colour Sprite Mode

In addition to monochrome and multi-colour modes, the VIC-IV supports a new full-
colour sprite mode. In this mode, four bits are used to encode each sprite pixel. How-
ever, unlike multi-colour mode where pairs of bits encode pairs of pixels, in full-colour
mode the pixels remain at their normal horizontal resolution. The colour zero is consid-
ered transparent. If you wish to use black in a full-colour sprite, you must configure the
palette bank that is selected for sprites so that one of the 15 colours for the specific
sprite encodes black.

Full-colour sprite mode is selectable for each sprite by setting the appropriate bit in
the SPR16&EN register (3D06B, 53355 decimal).

To enable the eight sprites to have 15 unique colours each, the sprite colour is drawn
using the palette entry corresponding to: spritenumber x 16 + nibblevalue, where
spritenumber is the number of the sprite (from 0 to 7), and nibblevalue is the value of
the half-byte that contains the sprite data for the pixel. In addition, if bitplane mode
is enabled for this sprite, then 128 is added to the colour value, which makes it easy
to switch between two colour schemes for a given sprite by changing only one bit in
the SPRBPMEN register.

Because Full-Colour Sprite Mode requires four bits per pixel, sprites will be only six
pixels wide, unless Extra Wide Sprite Mode is enabled for a sprite, in which case the
sprite will be 16 pixels wide. Tiled Mode also works with Full-Colour Sprite Mode, and
will result in the 16 full-colour pixels of the sprite being repeated until the end of the
raster line.

The following BASIC program draws a Full-Colour Sprite in either C64 or C65-mode:

45

16 PRINT CHRS (147)

20 REM C65/C64-MODE DETECT

30 IF PEEK(33272) AND 32 THEN GOTO 160

40 POKE 53295, ASC("G"): POKE 53285, ASC("§")

160 REM SETUP SPRITE

110 aD=4096 :REM 51688 SPRITE ADDR

120 TC=16 :REH TRANSPARENT COLOUR

130 SPR=PEEK(53356)+PEEK (53357)%256 :REM GET SPRITE TABLE ADDRESS
140 POKE SPR,AD /64 :REM SET SPRITE ADDRESS
150 FOR I=AD TO AD+168 :REM CLEAR SPRITE WITH TC
160 POKE I,TC+TC*16 :REM ONE BYTE = 2 PIXEL

170 NEXT

180 POKE 53287,TC :REM SET TRANSPARENT COLOUR

190 POKE 53248,100 :REM PUT SPRITE...

200 POKE 33249,180 :REM ON SCREEN AT 100,100

210 POKE 33333,1 :REM MAKE SPRITE 0 16-COLOUR
220 POKE 93333,1 ‘REM MAKE SPRITE 8 USE 16X4-BITS
230 POKE 53269,1 :REM ENABLE SPRITE 8

240 GOSUB 3900 :REM READ MULTI-COLOUR SPRITE
230 END

360 REM LOAD SPRITE FROM DATA

910 READ N§:IF N&="END" THEN RETURN

920 GOSUB 1080 : DECODE LINE
930 60TO 910

46

REM DECODE STRING OF NIBBLES IN N5 AT ADDRESS AD

IF LENCN$)C316 THEN PRINT "ILLEGAL SPR DATA!'":END

FOR I=1 TD 16 STEP 2

N=CASCCNIDS (NS, T,10)-ASC("E")) :REM HIGH NYB

IF N{B THEN N=TC ‘REM . IS TRANSPARENT
H=CASCCHIDS (NS, T+1,1))-ASCC"E")) :REM LON NYB

IF H{B THEN H=TC (REM . IS TRANSPARENT
POKE AD,(N AND 13)%i6 + (M AND 15):REM SET 2 PIRELS
AD=AD+1 :REM ADVANCE AD

NEXT 1

RETURN

REM SPRITE DATA

REM . = TRANSPARENT, €-0 = COLOURS & TD 135
DATA "..ARFF ... HHCC...
DATA ". RAFF HHEC ..
DATA "AAFF HHLC .
DATA "“AFF...E0C...HHC.
DATA “FF..BBGGGEE. . HH.
DATA "..CEGGGEGEGEE. ..
DATA ", BGGEGGEGEEGEE ..
DATA ", BGGEOGEGEEGEE ..
DATA "CGOGRCGEGERGEGE .,
DATA "CGORGGEGEGEEEEE .
DATA "CGGGEGGEGEEG6GE .,
DATA "CGGGEGBEBGEGGEE .
DATA "CGGGBBBBBBRGGGE .
DATA ", BGGGGBBBGGGGE ..
DATA ", BGGGOGBGGOGGE ..
DATA "..BRGGEGEGEEE. ..
DATA "II..BBGGGRE.. KK,
DATA “DIT...C0RQ...KKE.
DATA "DDII KKEE .
DATA ".DDII KKEE ..
DATA "..DDIT...KKEE...
DATA "END"

There are a few cases where the VIC-lll chip in the Commodore 65 prototypes that are
known to exist either do not behave as specified, the specification lacks detail and the
implementation is oddly inconsistent, or the design itself has flaws or inconsistencies.
The default behavior of the VIC-IV is to emulate the VIC-IIl as closely as possible in
these cases. In some cases where the VIC-IIl behavior is lacking, the VIC-IV provides
improved behaviors that can be selected by software using the HWERRATA register at
$DO8F.

Because these fixes are backwards incompatible with the VIC-IIl and with earlier ver-
sions of the VIC-IV and the MEGAS5 core, software must opt in to these fixes by
setting the HWERRATA register. This protects software from further changes that may
be introduced in future versions of the MEGAS5 core. The boot state of this register is
$00, which requests full compatibility with the VIC-IIl, including buggy behaviors. The
MEGA65 ROM will always leave this set to $00 when launching programs. A program
can set HWERRATA to enable a set of fixes known to the developer at the time the pro-
gram is written, and exclude backwards incompatible fixes that might be introduced
in later versions.

Requesting an errata level enables all fixes up to that level. By design, there is no
way to request a level and exclude specific fixes at lower levels. You must write your
program to accommodate all fixes up to the requested level.

In cases where enabling a fix changes the behavior of a hot register, setting the errata
level does not trigger hot register propagation. The program must trigger hot register
propagation by writing a 1 to the HOTREG register.

The errata levels implemented so far are as follows:

VIC-lll Errata Levels

Level Fixed behavior Release
introduced

0 No fixes. Fully VIC-IIl compatible. N/A

1 X scroll position shifted in H640 mode. The [v0.96

VIC-IIl renders the text smooth scroll X position
($D0 16 XSCL) incorrectly in H640 mode. The
fix offsets the scroll position 1 logical pixel (2
physical pixels) to the right. This does not take
effect until hot register propagation.

continued ...

48

Level

Fixed behavior

Release
introduced

Character attribute combinations. When the
upper palette ("bold”) character attribute (bit
4) is set, the VIC-IIl has counterintuitive behav-
iors when "blink” (bit 4) or "reverse” (bit 5) are
also set: blink will toggle the upper palette at-
tribute and not blink the character, and reverse
has no effect. With this fix, upper palette + blink
will blink the character, and bold + reverse will
reverse the character, displayed with the upper
palette in both cases.

v0.96

SD Card Busy Flag behaviour. The SD card
busy flag (bit 1 of $D680) indicates if the low-
level SD card controller is busy. The addition
of the SD card controller read-ahead function-
ality means that older software that expectes
this bit to clear on completion of a read op-
eration will incorrectly wait for the entire read-
ahead sequence to complete. This may in turn
result in software incorrectly believing the sec-
tor read has failed due to the longer time re-
quired, or that another read request cannot be
immediately submitted. Therefore below this er-
rata level the SD card busy flag does not indi-
cate if the SD card controller is performing a
background sector read-ahead operation. At
or above this errata level this information is not
concealed, i.e., bit 0 will clear when the re-
quested sector is available, but bit 1 will remain
set while any read-ahead operation continues.

VIC-ll / C64 REGISTERS

HEX

DEC

DB7 | DB6 | DB5 | DB4 | DB3 | DB2

DB1 | DBO

D000

53248

SOX

D001

53249

SOoY

D002

53250

S1X

D003

53251

S1Y

D004

53252

S2X

D005

53253

S2Y

D006

53254

S3X

continued ...

49

..continued

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DBI | DBO
D007 | 53255 SaY

D008 | 53256 Sax

D009 | 53257 Sav

DOOA | 53258 S5%

DOOB | 53259 S5v

DOOC | 53260 S6x

DOOD | 53261 S6v

DOOE | 53262 S7X

DOOF | 53265 S7Y

D010 | 53264 SXMSB

DOT1 | 55265 | RC8 | ECM | BMM | BLNK | RSEL YSCL

D012 | 53266 RC

D013 | 53267 LPX

D014 | 53268 Py

D015 | 53269 SE

D016 | 53270 - RST | MCM | CStL XSCL

D017 | 53271 SEXY

D018 | 53272 VS CB -
D019 | 53273 - P | 1ssC | 1SBC | RRQ
DOTA | 53274 _ MISSC | MISBC | MRIRQ
DOTB | 53275 BSP

DOTC | 53276 SCM

DOID | 53277 SEXX

DOTE | 53278 SSC

DOTF | 53279 SBC

D020 | 53280 - BORDERCOL

D021 | 53281 N SCREENCOL

D022 | 53282 N MC1

D025 | 53285 N MC2

D024 | 53284 N MC3

D025 | 55285 SPRMCO

D026 | 53286 SPRMC1

D027 | 53287 SPROCOL

D028 | 53288 SPRICOL

D025 | 53289 SPR2COL

D02A | 53290 SPR3COL

D026 | 53291 SPRACOL

D02C | 53292 SPR5COL

DO2D | 53293 SPR6COL

DO2E | 53294 SPR7COL

D030 | 53296) <2

50

BLNK Enable display: 0 = blank the display, 1 = show the display
BMM bitmap mode

BORDERCOL display border colour (16 colour)

BSP sprite background priority bits

C128FAST 2MHz select (for C128 2MHz emulation)
CB character set address location (x 1KiB)

CSEL 38/40 column select

ECM extended background mode

ILP light pen indicate or acknowledge

ISBC sprite:bitmap collision indicate or acknowledge
ISSC sprite:sprite collision indicate or acknowledge
LPX Coarse horizontal beam position (was lightpen X)
LPY Coarse vertical beam position (was lightpen Y)
MC 1 multi-colour 1 (16 colour)

MC2 multi-colour 2 (16 colour)

MC3 multi-colour 3 (16 colour)

MCM Multi-colour mode

MISBC mask sprite:bitmap collision IRQ

MISSC mask sprite:sprite collision IRQ

MRIRQ mask raster IRQ

RC raster compare bits 0 to 7

RC8 raster compare bit 8

RIRQ raster compare indicate or acknowledge

RSEL 24/25 row select

RST Disables video output on MAX Machine(tm) VIC-Il 65646. Ignored on normall
Cé4s and the MEGAS5

SBC sprite/foreground collision indicate bits
SCM sprite multicolour enable bits
SCREENCOL screen colour (16 colour)

SE sprite enable bits

SEXX sprite horizontal expansion enable bits

S1

+ SEXY sprite vertical expansion enable bits

+ SNX sprite N horizontal position

+ SNY sprite N vertical position

+ SPRMCO Sprite multi-colour 0
+ SPRMC1 Sprite multi-colour 1

+ SPRNCOL sprite N colour / 16-colour sprite transparency colour (lower nybl)

+ 8SC sprite/sprite collision indicate bits
+ SXMSB sprite horizontal position MSBs
* VS screen address (x 1KiB)
+ XSCL horizontal smooth scroll

* YSCL 24/25 vertical smooth scroll

VIC-lll / C65 REGISTERS

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO
D020 53280 BORDERCOL

D021 53281 SCREENCOL

D022 53282 MC1

D023 53283 MC2

D024 | 53284 MC3

D025 53285 SPRMCO

D026 53286 SPRMC1

DO2F 53295 KEY

D030 53296 | ROME | CROM? | ROMC | ROMA ROM8 PAL |EXTSYNC| CRAM2K
D031 53297 H640 FAST ATTR BPM V400 H1280 | MONO INT
D033 53299 BOADODD N BOADEVN -
D034 | 53300 B1ADODD - BT1ADEVN -
D035 53301 B2ADODD - B2ADEVN -
D036 53302 B3ADODD - B3ADEVN -
D037 53303 B4ADODD - B4ADEVN -
D038 53304 BSADODD - BSADEVN -
D039 53305 BSADODD - BSADEVN -
DO3A | 53306 B7ADODD - B7ADEVN -
D03B | 53307 BPCOMP

D0O3C | 53308 BPX

DO3D | 53309 BPY

DO3E 53310 HPOS

continued ...

..continued

HEX | DEC | DB/ | DB6 | DB5 | DB4 | DB3 | DB2 | DBi | DBO
DO3F | 53311 VPOS
D040 | 53312 BOPIX
D041 | 53313 BI1PIX
D042 | 53314 B2PIX
D043 | 53315 B3PIX
D044 | 53316 BAPIX
D045 | 53317 B5PIX
D046 | 53318 BGPIX
D047 | 53319 B7PIX
D100- | 53504 -

DIFF | 53759 PALRED
D200- | 53760 -

D2FF | 54015 PALGREEN
D300- | 54016 -

D3FF | 54271 PALBLUE

ATTR Enable extended attributes and 8 bit colour entries
BNPIX Display Address Translater (DAT) Bitplane N port
BORDERCOL display border colour (256 colour)

BPCOMP Complement bitplane flags

BPM Bit-Plane Mode

BPX Bitplane X

BPY Bitplane Y

BXADEVN Bitplane X address, even lines

BXADODD Bitplane X address, odd lines

CRAM2K Map 2nd KB of colour RAM $DCO00-$DFFF
CROM?9 Select between C64 and Cé5 charset.

EXTSYNC Enable external video sync (genlock input)

FAST Enable C65 FAST mode (~3.5MHz)

H1280 Enable 1280 horizontal pixels (not implemented)
H640 Enable C64 640 horizontal pixels / 80 column mode
HPOS Bitplane X Offset

INT Enable VIC-Ill interlaced mode

KEY Write $AS5 then $96 to enable C65/VIC-III IO registers

53

* MC1 multi-colour 1 (256 colour)

* MC2 multi-colour 2 (256 colour)

* MC3 multi-colour 3 (256 colour)

* MONO Enable VIC-IIl MONO composite video output (colour if disabled)
* PAL Use PALETTE ROM (0) or RAM (1) entries for colours 0 - 15
 PALBLUE blue palette values (reversed nybl order)

+ PALGREEN green palette values (reversed nybl order)

+ PALRED red palette values (reversed nybl order)

+ ROM8 Map C65 ROM $8000

+ ROMA Map C65 ROM $A000

* ROMC Map C65 ROM $C000

* ROME Map C65 ROM $E000

« SCREENCOL screen colour (256 colour)

* SPRMCO Sprite multi-colour 0 (8-bit for selection of any palette colour)

+ SPRMC 1 Sprite multi-colour 1 (8-bit for selection of any palette colour)
* V400 Enable 400 vertical pixels
« VPOS Bitplane Y Offset

VIC-IV / MEGA6 S5 SPECIFIC
REGISTERS

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO
D020 53280 BORDERCOL

D021 53281 SCREENCOL

D022 53282 MC1

D023 53283 MC2

D024 53284 MC3

D025 53285 SPRMCO

D026 53286 SPRMC 1

DO2F 53295 KEY

D048 53320 TBDRPOS

D049 53321 SPRBPMEN TBDRPOS
D0O4A 53322 BBDRPOS

continued ...

54

..continued

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO
D04B 53323 SPRBPMEN BBDRPOS
D04C 53324 TEXTXPOS

D04D 53325 SPRTILEN ‘ TEXTXPOS
DO4E 53326 TEXTYPOS

DO4F 53327 SPRTILEN ‘ TEXTYPOS
D050 53328 XPOSLSB

D051 53329 [NORRDEL| DBLRR XPOSMSB

D052 53330 FNRASTERLSB

D053 53331 FNRST | SHDEMU | UPSCALE SERRE/_ED - FNRASTERMSB
D054 53332 | ALPHEN | VFAST | PALEMU |SPRH640| SMTH FCLRHI | FCLRLO | CHR16
D055 53333 SPRHGTEN

D056 53334 SPRHGHT

D057 53335 SPRX64EN

D058 53336 LINESTEPLSB

D059 53337 LINESTEPMSB

DO5A 53338 CHRXSCL

DO5B 53339 CHRYSCL

DO5C 53340 SDBDRWDLSB

DO5D 53341 | HOTREG [RSTDELEN SDBDRWDMSB

DO5E 53342 CHRCOUNT

DO5F 53343 SPRXSMSBS

D060 53344 SCRNPTRLSB

D061 53345 SCRNPTRMSB

D062 53346 SCRNPTRBNK

D063 53347 |EXGLYPH FCOLMCM CHRCOUNT SCRNPTRMB
D064 53348 COLPTRLSB

D065 53349 COLPTRMSB

D068 53352 CHARPTRLSB

D069 53353 CHARPTRMSB

DOSA 53354 CHARPTRBNK

D04B 53355 SPR16EN

D06C 53356 SPRPTRADRLSB

D0O&D 53357 SPRPTRADRMSB

DOGE 53358 |SPRPTR16 SPRPTRBNK

DO6F 53359 | PALNTSC |VGAHDTV RASLINEO

D070 53360 MAPEDPAL BTPALSEL ‘ SPRPALSEL ABTPALSEL
D071 53361 BP16ENS

D072 53362 SPRYADJ

D073 53363 RASTERHEIGHT ‘ ALPHADELAY
D074 53364 SPRENALPHA

continued ...

55

..continued

HEX | DEC [DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO
D075 | 53365 SPRALPHAVAL

D076 | 53366 SPRENV400

D077 | 53367 SPRYMSBS

D078 | 53368 SPRYSMSBS

D079 | 53369 RASCMP

DO7A | 53370 Fgr,zv\sg- EXTIRQS 'é%%% CHARY 16 g‘gﬁ} RASCMPMSB
DO7B | 53371 DISPROWS

DO7C | 53372 DEBUGC | VSYNCP | HSYNCP | RESV | BITPBANK

« ABTPALSEL VIC-IV bitmap/text palette bank (alternate palette)

+ ALPHADELAY Alpha delay for compositor

+ ALPHEN Alpha compositor enable

« BBDRPOS bottom border position

« BITPBANK Set which 128KB bank bitplanes

+ BORDERCOL display border colour (256 colour)

+ BP16ENS VIC-IV 16-colour bitplane enable flags

« BTPALSEL bitmap/text palette bank

« CHARPTRBNK Character set precise base address (bits 23 - 16)

« CHARPTRLSB Character set precise base address (bits 0 - 7)

« CHARPTRMSB Character set precise base address (bits 15 - 8)

« CHARY 16 Alternate char ROM bank on alternate raster lines in V200

« CHR16 enable 16-bit character numbers (two screen bytes per character)
+ CHRCOUNT Number of characters to display per row (LSB)

+ CHRXSCL Horizontal hardware scale of text mode (pixel 120ths per pixel)

« CHRYSCL Vertical scaling of text mode (number of physical rasters per char text
row)

« COLPTRLSB colour RAM base address (bits 0 - 7)
+ COLPTRMSB colour RAM base address (bits 15 - 8)

* DBLRR When set, the Raster Rewrite Buffer is only updated every 2nd raster line,
limiting resolution to V200, but allowing more cycles for Raster-Rewrite actions.

« DEBUGC VIC-IV debug pixel select red(01), green(10) or blue(11) channel vis-
ible in $D07D

56

DISPROWS Number of text rows to display

EXGLYPH source full-colour character data from expansion RAM
EXTIRQS Enable additional IRQ sources, e.g., raster X position.
FCLRHI enable full-colour mode for character numbers >$FF
FCLRLO enable full-colour mode for character numbers <=$FF
FCOLMCM enable 256 colours in multicolour text mode
FNRASTERLSB Read physical raster position

FNRASTERMSB Read physical raster position

FNRST Read raster compare source (0=VIC-IV fine raster, 1=VIC-I| raster), pro-
vides same value as set in FNRSTCMP

FNRSTCMP Raster compare is in physical rasters if clear, or VIC-Il rasters if set

HOTREG Enable VIC-Il hot registers. When enabled, touching many VIC-Il reg-
isters causes the VIC-IV to recalculate display parameters, such as border po-
sitions and sizes. Touching registers while this is disabled will trigger a change
when reenabling. Setting this to 0 will clear the recalc flag, canceling the re-
calculation.

HSYNCP hsync polarity

KEY Write $47 then $53 to enable C65GS/VIC-IV IO registers
LINESTEPLSB number of bytes to advance between each text row (LSB)
LINESTEPMSB number of bytes to advance between each text row (MSB)
MAPEDPAL palette bank mapped at $D100-$D3FF

MC 1 multi-colour 1 (256 colour)

MC2 multi-colour 2 (256 colour)

MC3 multi-colour 3 (256 colour)

NOBUGCOMPAT Disables VIC-IIl / C65 Bug Compatibility Mode if set
NORRDEL When clear, raster rewrite double buffering is used

PALEMU Enable PAL CRT-like scan-line emulation

PALNTSC NTSC emulation mode (max raster = 262)

RASCMP Physical raster compare value to be used if FNRSTCMP is clear
RASCMPMSB Raster compare value MSB

RASLINEO first VIC-Il raster line

RASTERHEIGHT physical rasters per VIC-Il raster (1 to 16)

57

RESERVED Reserved

RSTDELEN Enable raster delay (delays raster counter and interrupts by one line
to match output pipeline latency)

SCREENCOL screen colour (256 colour)

SCRNPTRBNK screen RAM precise base address (bits 23 - 16)
SCRNPTRLSB screen RAM precise base address (bits 0 - 7)
SCRNPTRMB screen RAM precise base address (bits 31 - 24)
SCRNPTRMSB screen RAM precise base address (bits 15 - 8)
SDBDRWDLSB Width of single side border (LSB)

SDBDRWDMSB side border width (MSB)

SHDEMU Enable simulated shadow-mask (PALEMU must also be enabled)
SMTH video output horizontal smoothing enable

SPR16EN sprite 16-colour mode enables

SPRALPHAVAL Sprite alpha-blend value

SPRBPMEN Sprite bitplane-modify-mode enables

SPRENALPHA Sprite alpha-blend enable

SPRENV400 Sprite V400 enables

SPRH640 Sprite H640 enable

SPRHGHT Sprite extended height size (sprite pixels high)

SPRHGTEN sprite extended height enable (one bit per sprite)

SPRMCO Sprite multi-colour 0 (8-bit for selection of any palette colour)
SPRMC 1 Sprite multi-colour 1 (8-bit for selection of any palette colour)
SPRPALSEL sprite palette bank

SPRPTR16 16-bit sprite pointer mode (allows sprites to be located on any 64
byte boundary in chip RAM)

SPRPTRADRLSB sprite pointer address (bits 7 - 0)
SPRPTRADRMSB sprite pointer address (bits 15 - 8)
SPRPTRBNK sprite pointer address (bits 23 - 16)
SPRTILEN Sprite horizontal tile enables.

SPRX64EN Sprite extended width enables (8 bytes per sprite row = 64 pixels
wide for normal sprites or 16 pixels wide for 16-colour sprite mode)

58

SPRXSMSBS Sprite H640 X Super-MSBs
SPRYADJ Sprite Y position adjustment
SPRYMSBS Sprite V400 Y position MSBs
SPRYSMSBS Sprite V400 Y position super MSBs

SPTRCONT Continuously monitor sprite pointer, to allow changing sprite data
source while a sprite is being drawn

TBDRPOS top border position

TEXTXPOS character generator horizontal position

TEXTYPOS Character generator vertical position

UPSCALE Enable integrated low-latency (130usec) 720p upscaler
VFAST C65GS FAST mode (48MHz)

VGAHDTV Select more VGA-compatible mode if set, instead of HDMI/HDTV
VIC-II cycle-exact frame timing. May help to produce a functional display on
older VGA monitors.

VSYNCP vsync polarity
XPOSLSB Read horizontal raster scan position LSB
XPOSMSB Read horizontal raster scan position MSB

59

60

CHAPTER 3

Sound Interface Device (SID)

® SID Registers

62

SID REGISTERS

The MEGAG5 has 4 SIDs build in, which can be access through the register ranges
starting at $D400, $D420, $D440, and $D460. The registers in each of these ranges
are exactly the same, so the following table only lists the first SID. Add 32 the get to

the next SID respectively.

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DBI | DBO

D400 | 54272 VOICE 1FRQLO

D401 | 54273 VOICE 1FRQHI

D402 | 54274 VOICE 1PWLO

D403 | 54275 VOICE TUNSD VOICE 1PWHI

5404 | 54276 | VOICET-[VOICE 1-| VOICE I- [VOICE I- | VOICE 1-| VOICE 1- | VOICE1- | VOICE I-
CTRLRNW | CTRLPUL |CTRLSAW| CTRITRI | CTRITST |CTRLRMO| CTRLRMF [CTRLGATE

D405 | 54277 ENV 1ATTDUR ENV 1DECDUR

D406 | 54278 ENV 1SUSDUR ENV TRELDUR

D407 | 54279 VOICE2FRQLO

D408 | 54280 VOICE 2FRQHI

D409 | 54281 VOICE2PWLO

D40A | 54282 VOICE2UNSD VOICE 2PWHI

5408 | 542835 | VOICE2- | VOICE2- [VOICE2- | VOICE2- | VOICE2- | VOICE2- | VOICE2- | VOICE2-
CTRLRNW| CTRLPUL |CTRLSAW| CTRITRI | CTRLTST |CTRLRMO| CTRLRMF [CTRLGATE

D40C | 54284 ENV2ATTDUR ENV2DECDUR

D40D | 54285 ENV2SUSDUR ENV2RELDUR

D40E | 54286 VOICE3FRQLO

DAOF | 54287 VOICE3FRQHI

D410 | 54288 VOICE3PWLO

D411 | 54289 VOICE3UNSD VOICE3PWHI

5412 | 54290 | VOICE3-[VOICE3-]VOICE3- [VOICE3- | VOICE3- | VOICES- | VOICE3- | VOICES-
CTRLRNW | CTRLPUL |CTRLSAW| CTRITRI | CTRITST |CTRLRMO| CTRLRMF [CTRLGATE

D413 | 54291 ENV3ATTDUR ENV3DECDUR

D414 | 54292 ENV3SUSDUR ENV3RELDUR

D415 | 54293 FLTRCUTFRQLO

D416 | 54294 FLTRCUTFROHI

D417 | 54295 FLTRRESON E%RNP vﬁqum VFQLgQUT VFSLI)RUT

D418 | 54296 cFLETTs/s H'I:IF-’LRSS ngfss ngxsss FITRVOL

D419 | 54297 PADDLE 1

DATA | 54298 PADDLE2

D4TB | 54299 OSC3RNG

D4AIC | 54300 ENV3OUT

D63C | 54844 - \ SIDMODE

+ ENV3OUT Envelope Generator 3 Output

63

ENVXATTDUR Envelope Generator X Attack Cycle Duration
ENVXDECDUR Envelope Generator X Decay Cycle Duration
ENVXRELDUR Envelope Generator X Release Cycle Duration
ENVXSUSDUR Envelope Generator X Sustain Cycle Duration
FLTRBDPASS Filter Band-Pass Mode

FLTRCUTFRQHI Filter Cutoff Frequency High

FLTRCUTFRQLO Filter Cutoff Frequency Low

FLTRCUTVS3 Filter Cut-Off Voice 3 Output (1 = off)

FLTREXTINP Filter External Input

FLTRHIPASS Filter High-Pass Mode

FLTRLOPASS Filter Low-Pass Mode

FLTRRESON Filter Resonance

FLTRVOL Filter Output Volume

FLTRVXOUT Filter Voice X Output

OSC3RNG Oscillator 3 Random Number Generator

PADDLE 1 Analog/Digital Converter: Game Paddle 1 (0-255)
PADDLE2 Analog/Digital Converter Game Paddle 2 (0-255)
SIDMODE Select SID mode: 0=6581, 1=8580

VOICE 1CTRLRMF Voice 1 Synchronize Osc. 1 with Osc. 3 Frequency
VOICE 1CTRLRMO Voice 1 Ring Modulate Osc. 1 with Osc. 3 Output
VOICE2CTRLRMF Voice 2 Synchronize Osc. 2 with Osc. 1 Frequency
VOICE2CTRLRMO Voice 2 Ring Modulate Osc. 2 with Osc. 1 Output
VOICE3CTRLRMF Voice 3 Synchronize Osc. 3 with Osc. 2 Frequency
VOICE3CTRLRMO Voice 3 Ring Modulate Osc. 3 with Osc. 2 Output
VOICEXCTRLGATE Voice X Gate Bit (1 = Start, 0 = Release)
VOICEXCTRLPUL Voice X Pulse Waveform

VOICEXCTRLRNW Voice X Control Random Noise Waveform
VOICEXCTRLSAW Voice X Sawtooth Waveform

VOICEXCTRLTRI Voice X Triangle Waveform

VOICEXCTRLTST Voice X Test Bit - Disable Oscillator

64

VOICEXFRQHI Voice X Frequency High
VOICEXFRQLO Voice X Frequency Low
VOICEXPWHI Voice X Pulse Waveform Width High
VOICEXPWLO Voice X Pulse Waveform Width Low
VOICEXUNSD Unused

65

66

CHAPTER

FO 18-Compatible Direct
Memory Access (DMA)
Controller

FO18A/B DMA Jobs

MEGA65 Enhanced DMA Jobs
Texture Scaling and Line Drawing
Inline DMA Lists

Audio DMA

FO18 “DMAgic” DMA Controller
MEGA65 DMA Controller Extensions

Unimplemented Functionality

68

The MEGAGSS includes an FO 18 /F0 18A backward-compatible DMA controller. Unlike
inthe C65, where the DMA controller exists as a separate chip, it is part of the 45GS02
processor in the MEGASS. However, as the use of the DMA controller is a logically
separate topic, it is documented separately in this appendix.

The MEGA65’s DMA controller provides several important improvements over the
FO18/F018A DMAgic chips of the C65:

+ Speed The MEGAS5 performs DMA operations at 40MHz, allowing filling 40MB
or copying 20MB per second. For example, it is possible to copy a complete 8KB
Cé4-style bitmap display in about 200 micro-seconds, equivalent to less than
four raster lines!

* Large Memory Access The MEGAS5’s DMA controller allows access to all
256MB of address space.

+ Texture Copying Support The MEGA65’s DMA controller can do fractional ad-
dress calculations to support hardware texture scaling, as well as address strid-
ing, to make it possible in principle to simultaneously scale-and-draw a texture
from memory to the screen. This would be useful, should anyone be crazy enough
to try to implement a Wolfenstein or Doom style-game on the MEGAGS.

+ Transparency/Mask Value Support The MEGA65’s DMA controller can be told
to ignore a special value when copying memory, leaving the destination memory
contents unchanged. This allows masking of transparent regions when perform-
ing a DMA copy, which considerably simplifies blitting of graphics shapes.

* Per-Job Option List A number of options can be configured for each job in a
chained list of DMA jobs, for example, selecting FO 18 or FO 18B mode, changing
the transparency value, fractional address stepping or the source or destination
memory region.

+ Background Audio DMA The MEGA&S includes background audio DMA capa-
bilities similar to the Amiga™ series of computers. Key differences are that the
MEGAG&S can use either 8 or 16-bit samples, supports very high sample rates
up to approximately 1 MHz, has 256 volume settings per channel, and no inter-
channel modulation.

To execute a DMA job using the FO 18 series of DMA controllers, you must construct
the list of DMA jobs in memory, and then write the address of this list into the DMA ad-
dress registers. The DMA job will execute when you write to the ADDRLSBTRIG register
($D700). For this reason you must write the MSB and bank number of the DMA list intO
$D701 and $D702 first, and the LSB only after having set these other two registers. If
you wish to execute multiple DMA jobs using the same list structure in memory, you can
simply write to ADDRLSBTRIG again after updating the list contents - provided that no
other program has modified the contents of $D701 or $D702. Note that BASIC 65

69

uses the DMA controller to scroll the screen, so it is usually safest to always write to all
three registers.

When ADDRLSBTRIG has been written to, the DMA job completes immediately. Unlike
on the C65, the DMA controller is part of the processor of the MEGAS5. This means
that the processor stops trying to execute instructions until the DMA job has completed.
The only exception to this, is that Audio DMA continues, and will steal cycles from any
other DMA activity, to ensure that audio playback is not affected.

This behaviour means that unlike on the C65, DMA jobs cannot be interrupted. If your
program has sensitive timing requirements, you may need to break larger DMA jobs into
several smaller jobs. This is somewhat mitigated by the high speed of the MEGAS5’s
DMA, which is able to fill memory at 40.5MB per second and copy memory at 20.25MB
per second, compared with circa 3.5MB and 1.7MB per second on a C65. This allows
larger DMA jobs to be executed, without needing to worry about the impact on real-
time elements of a program. For example, it is possible to fill an 80 column 50 row
text screen using the MEGAS5’s DMA controller in just 200 microseconds.

FO18 DMA Job List Format

The MEGA&5’s DMA controller supports the two different DMA job list formats used by
the original FO 18 part that was used in the earlier C65 prototypes (upto Revision 2B)
and the FO 18B and later revisions used in the Revision 3 - 5 C45 prototypes. The main
difference is the addition of a second command byte, as the following tables show:

It is important to know which style the DMA controller is expecting. The MEGAGS5's
Hypervisor sets the mode based on the detected version of C65 ROM, if one is running.
If it is an older one, then the FO 18 style is expected, otherwise the newer FO 18B style
is expected. You can check which style has been selected by querying bit 0 of $D703:
If itis a 1, then the newer FO18B 12 byte list format is expected. If it is a O, then the
older FO18 11 byte list format is expected. The expected style can be set by writing
to this register.

Unless you are writing software that must also run on a C65 prototype, you should
most probably use the MEGA65’s Enhanced DMA Jobs, where the list format is ex-
plicitly specified in the list itself. As the Enhanced DMA Jobs are an extension of the
FO18/F018B DMA jobs, you should still read the following, unless you are already
familiar with the behaviour of the FO 18 DMA controller.

70

FO18 11 byte DMA List Structure

Offset [Contents

$00 [Command LSB

$01 [Count LSB

$02 Count MSB

$03 [Source Address LSB

$04 [Source Address MSB

$05 [Source Address BANK and FLAGS
$06 |Destination Address LSB

$07 |Destination Address MSB

$08 |Destination Address BANK and FLAGS
$09 Modulo LSB

$0a Modulo MSB

* The Command MSB is $00 when using this list format.

FO18B 12 byte DMA List Structure

Offset [Contents

$00 [Command LSB

$01 [Count LSB

$02 [Count MSB

$03 [Source Address LSB

$04 [Source Address MSB

$05 [Source Address BANK and FLAGS
$06 |Destination Address LSB

$07 |Destination Address MSB

$08 |Destination Address BANK and FLAGS
$09 [Command MSB

$0a Modulo LSB / Mode

$0b Modulo MSB / Mode

The structure of the command word is as follows:

Bit(s) [Contents

0-1 |DMA Operation Type
Chain (i.e., another DMA list follows)
Yield to interrupts
IMINTERM -SA -DA bit
MINTERM -SA DA bit
IMINTERM SA,-DA bit
IMINTERM SA,DA bit
8 - 9 |Addressing mode of source
10 - 11 |Addressing mode of destination
12 - 15 RESESRVED. Always set to 0s

NOOUDON

The command field take the following four values:

71

Value [Contents
%00 (0) [Copy
%01 (1) Mix (via MINTERMs)
%10 (2) Swap
%11 (3) Fill
* Only Copy and Fill are implemented at the time of writing.

—_——

The addressing mode fields take the following four values:

Value [Contents
) Linear (normal) addressing
) Modulo (rectangular) addressing
) Hold (constant address)
%11 (3) XY MOD (bitmap rectangular) addressing
* Only Linear, Modulo and Hold are implemented at the time of
writing.

The BANK and FLAGS field for the source address allow selection of addresses within
a 1MB address space. To access memory beyond the first TMB, it is necessary to use
an Enhanced DMA Job with the appropriate option bytes to select the source and/or
destination MB of memory. The BANK and FLAGS field has the following structure:

Bit(s) [Contents
0 -3 [Memory BANK within the selected MB

4 HOLD, i.e., do not change the address

5 |MODULG, i.e., apply the MODULO field to wrap-
around within a limited memory space
6 DIRECTION. If set, then the address is decremented
instead of incremented.
7 |/O. If set, then /O registers are visible during the
DMA controller at $D000 - $DFFF.

Performing Simple DMA Operations

For information on using the DMA controller from BASIC &5, refer to the PHA BASIC
command in the MEGAS5 Book, DMA (subsection B).

To use the DMA controller from assembly language, set up a data structure with the
DMA list, and then set $D702 - $D700 to the address of the list. For example, to clear
the screen in C65-mode by filling it with spaces, the following routine could be used:

72

LDA #4608 ; DMA 1list exists in BANK 8

STh sDT02

LDA #)dmalist ; Set M5B of DMA 1ist address

STA sDT01

LDA #{dmalist ; Set L5B of DMA 1ist address, and execute DHA
STA sD700

RTS

dmalist:
byte ; Command low byte: FILL
L word ; Count: 88x23 = 2000 bytes
Jword ; Fill with value 428
.byte ; Source bank (ignored with FILL operation)
. word ; Destination address where screen lives
byte ; Screen is in bank 8
byte ; Command high byte
L word ; Modulo (ignored due to selected commmand)

It is also possible to execute more than one DMA job at the same time, by setting the
CHAIN bit in the low byte of the command word. For example to clear the screen as
above, and also clear the colour RAM for the screen, you could use something like:

73

LDA
5TA
LDA
8TA
LDA
8TA
RTS

#4500
§b702
#)dmalist
§b701
#{dnalist
sbrod

dmalist:
Jbyte 507
Jword 2000
Jword $0020
.byte 500
.word 50800
Jbyte 500

i
H
Jbyte 500
Jword 50000 ;

; DMA 1list exists in BANK 8
; Set M5B of DMA 1ist address

; Set LSB of DMA 1ist address, and execute DHA

Command low byte: FILL + CHAIN

Count: 88x25 = 2000 bytes

Fill with value 520

Source bank (ignored with FILL operation)
Destination address where screen lives
Screen is in bank 8

Command high byte

Modulo (ignored due to selected commmand)

; Second DMA job immediately follows the first
Jbyte 503

.word 2000

Jbyte 500
.word §F800
Jbyte 501
.byte 500
.word 500680 ;

H
]
Jword 50081 ;
H
i

Command low byte: FILL

; Count: 88x23 = 2000 bytes

Fill with value $81 = white

Source bank (ignored with FILL operation)
Destination address where colour RAM lives
tolour RAM is in bank 1 (51FBBO-S1FFFF)
Command high byte

Modulo (ignored due to selected commmand)

Copying memory is very similar to filling memory, except that the command low byte
must be modified, and the source address field must be correctly initialised. For ex-
ample, to copy the character set from where it lives in the ROM at $2D000 - $2DFFF
to $5000, you could use something like:

74

LDA #4608 ; DMA 1list exists in BANK 8

STh sDT02

LDA #)dmalist ; Set M5B of DMA 1ist address

STA sDT01

LDA #{dmalist ; Set L5B of DMA 1ist address, and execute DHA
STA sD700

RTS

dmalist:
byte ; Command low byte: COPY
L word ; Count: 4KB = 4096
.word ; Copy from $xDOOO
.byte ; Source bank = $02 for $2xxxx
. word ; Destination address where screen lives
byte ; Screen is in bank 8
byte ; Command high byte
L word ; Modulo (ignored due to selected commmand)

It is also possible to perform a DMA operation from BASIC 2 in C64 mode by POKEing
the necessary values, after first making sure that MEGA65 or C65 1/O mode has been
selected by writing the appropriate values to $D02F (53295). For example, to clear
the screen in C64 BASIC 2 using the DMA controller, you could use something like:

10 rem enable megab3 [/0

20 poke53293,asc("g"):poke§3293, asc("s")

30 rem dma list in data statements

40 data 3: rem command lsb = fill

30 data 232,3 : rem screen is 1000 bytes = 3%256+232
60 data 32,0: rem fill with space = 32

70 data 0: rem source bank (unused for fill)

80 data 0,4: rem screen address = 1624 = 4%236

90 data 0: rem screen lives in bank 8

100 data B: rem command high byte

110 data 6,0: rem modulo (unused in this job)

120 rew put dma list at 5000 = 49152

130 fori=0toll:reada:pokedd152+i,a:next

140 rem execute job

150 pokedB42,8: rem dma list is in bank 8

160 pokeddBdl,192: rem dma list is in ScBxx

170 pokedB40,0: rem dma list is in $xx08, and execute

While this is rather cumbersome to do each time, if you wanted to clear the screen
again, all you would need to do would be to POKE 55848, 8 again, assuming that the
DMA list and DMA controller registers had not been modified since the previous time
the DMA job had been run.

The HOLD, I/O and other options can also be used to create interesting effects. For
example, to write a new value to the screen background colour very quickly, you could
copy a region of memory to $D021, with the 1/O flag set to make the /O register
visible for writing in the DMA job, and the HOLD flag set, so that the same address gets
written to repeatedly. This will write to the background colour at a rate of 20.5MHz,
which is almost as fast as the video pixel clock (27MHz). Thus we can change the
colour almost every pixel.

With a little care, we can make this routine such that it takes exactly one raster-line to
run, and thus draw vertical raster bars, or to create a kind of frankenstein video mode
that uses a linear memory layout - at the cost of consuming all of the processor’s time
during the active part of the display.

The following example does this to draw vertical raster bars on the screen. This pro-
gram assumes that the MEGAG5 is set to PAL. For NTSC, the size of the DMA transfer
would need to be decreased a little. The other thing to note with this program, is that
it uses MEGA65 Enhanced DMA Job option $81 to set the destination megabyte in
memory to $FFxxxxx, and the bank is set to $D, and the destination address to $0021,
to form the complete address $FFD0021. This is the true location of the VIC-IV's
border colour register. The program is written using ACME-compatible syntax.

76

basicheader:

t41;; 20208 5YS 2861

t11'word $80a,2020

t11'byte $9e,532,430,436,431,0,0,0

tt1;; fActual code begining at %8864 = 2061
Main:

t1lsei

ttl1da #4547 tt1; enable MEGABS /0
ttlsta 5D02¢

ttl1da #5933

ttlsta $d02f

t4I1da #63 +4I4¢1; Set CPU speed to fast
ttlsta @

t1l1da HO t11; disable screen to show only the border
tlsta 54011

tt11da $4012 tt1; MWait until start of the next raster
rasteresync:ttl ttItt1; before beginning loop for horizontal alignment
ttlcmp 54012

ttIbeq rasteresync

t11;; The following loop takes exactly one raster line at 40.3MHz in PAL
loop:
ttljsr triggerdma

ttlinp loop

triggerdma:
ttl1da HOttIt41441; make sure FOBL8 1list format
ttlsta $4703

t111da #O tt1t+l; dma list bank
tlsta 54702

ttl1da H#)rasterdmalist

ttlsta §4701

tt11da #{rasterdmalist

tlsta 54703

ttlrts

rasterdmalist:

"byte $81,5¢f,500

tt

"byte §060 t+It+1; COPY

tt

on
=
=
—_
v
a
—
=
=
o
-
(=1
w
[
a
~—
w
=
™
e
—
-
=
=
—
-—
-—
—
-—
-—
o
-
(-1
-
—
=
=]

w
[
a
[
-
-
m
LT
-
[
El
o=
[
-—
-—
vy
[
El
=]
—_
=]
—
[N
wa
-
vy
™
[
-
—
=
£

tt

tt

; source bank

"byte 500

tt

"word 50020¢+I4t1; destination address

"byte 41d

tt

; destination bank + HOLD

tt

;i unused wodulo field

"word 50000

tt

tt

8,0,0
12,12

g,0,0
1,12

8,0,0
i,

"byte 0
"byte 0

tt
tt

1!

ttl!

6,6,6

i,

1!

1!

The MEGA&S's implementation of the DMAgic supports significantly enhanced DMA

jobs. An enhanced DMA job is indicated by writing the low byte of the DMA list address

to $D705 instead of to $D700. The MEGASS will then look for one or more job option

tokens at the start of the DMA list. Those tokens will be interpretted, before executing

the DMA job which immediately follows the end of job options token ($00).

Job option tokens that take an argument have the most-significant bit set, and al-

ways take a 1 byte option. Job option tokens that take no argument have the most-

significant-bit clear. Unsupported job option tokens are simply ignored. This allows for

78

future revisions of the DMAgic to add support for additional options, without breaking
backward compatibility.

These options are also used to achieve advanced features, such as hardware texture
scaling at up to 20Mpixels per second, and hardware line drawing at up to 40Mpixels
per second. These advanced functions are implemented by allowing complex cal-
culations to be made to the source and/or destination address of DMA jobs as they
execute.

The list of valid job option tokens is:

79

$00
$06
$07
$0A
$0B
$0D
$OE
$OF
$53
$80
$81
$82
$83
$84
$85
$86
$87
$88
$89
$8A
$8B
$8C
$8D

$8E
$8F

$97
$98
$99
$9A
$98B
$9C
$9D

$9E

$OF

End of job option list

Disable use of transparent value

Enable use of transparent value

Use 11 byte FO11A DMA list format

Use 12 byte FO11B DMA list format

Write raw flux to floppy drive (see ??)

Read raw flux to floppy drive (see 77?)

Read raw flux to floppy drive (see 77?)

Enable ‘Shallan Spiral” Mode

Source address bits 20 - 27

Destination address bits 20 - 27

Source skip rate (256™ of bytes)

Source skip rate (whole bytes)

Destination skip rate (256™° of bytes)

Destination skip rate (whole bytes)

Transparent value (bytes with matching value are not written)

Set X column bytes (LSB) for line drawing destination address

Set X column bytes (MSB) for line drawing destination address
Set Y row bytes (LSB) for line drawing destination address

Set Y row bytes (MSB) for line drawing destination address

Slope (LSB) for line drawing destination address

Slope (MSB) for line drawing destination address

Slope accumulator initial fraction (LSB) for line drawing destination
address

Slope accumulator initial fraction (MSB) for line drawing destination
address

Line Drawing Mode enable and options for destination address (set
in argument byte): Bit 7 = enable line mode, Bit 6 = select X or V]
direction, Bit 5 = slope is negative.

Set X column bytes (LSB) for line drawing source address

Set X column bytes (MSB) for line drawing source address

Set Y row bytes (LSB) for line drawing source address

Set Y row bytes (MSB) for line drawing source address

Slope (LSB) for line drawing source address

Slope (MSB) for line drawing source address

Slope accumulator initial fraction (LSB) for line drawing source ad-
dress

Slope accumulator initial fraction (MSB) for line drawing source ad-
dress

Line Drawing Mode enable and options for source address (set in
argument byte): Bit 7 = enable line mode, Bit 6 = select X or V|
direction, Bit 5 = slope is negative.

80

TEXTURE SCALING AND LINE DRAWING

The DMAgic supports an advanced internal address calculator that allows it to draw
scaled textures and draw lines with arbitrary slopes on VIC-IV FCM video displays.

For texture scaling, the FCM screen must be arranged vertically, as shown below:

By lining the characters into vertical columns like this, advancing vertically by one pixel
adds a constant 8 bytes each time, as shown below:

81

$000 [$001 | $002 |$003 | $004 | $005 | $006 | $007|

$008 | S008 [$00A $00F

$010 [$011 | $012 |$013 | $014 | $015 | $016 | $017|

$018 [$019 | $01A |$01B|$01C| $01D|S01E | $01F| . . .

$020 | $021 | $022 |$023 | $024 | $025 | $026 | $027|

5028 | $029 [$02A $02F]
5030 [$031 | $032 |$033 |$034 | $035 |$036 |$037]
$038 039 $03A S03F]
5040 [$041 | $042 |$043 | $044 | $045 |$046 |$047]
5048 |$048 | S04A $04F]
$050 | $051 | $052 |$053 | $054 | $055 | $056 | 057
$058 $059 | $05A S05F] . . .
5060 |S061 |$062 |$063 |$064 | $065 | $066 |$067
5068 |$069 | S06A $06F]

$070 [$071|$072 |$073 | $074 | $075 |$076 | $077

3078 [$079 | $07A $07D|$O7E| $07F|

$080 ($081 |$082 | $083 | $084 | $085 |$086 | $087|

$088 | ... |... [...

The source and destination skip rates also allow setting the scaling factors. A skip rate
of $0100 this corresponds to stepping $01.00 pixels. To use the vertically stacked
FCM layout as the target for copying vertical lines of textrures, then the destination
skip rate should be $0800, i.e., 8.0 bytes per pixel. This would copy a vertical line
of texture data without scaling. By setting the source stepping to < $0 100 will cause
some pixels to be repeated, effectively zooming the texture in, while setting the source
stepping to > $0100 will cause some pixels to be skipped, effectively zooming the
texture out. The destination stepping does not ordinary need to be adjusted. Note
that the texture data must be stored with each vertical stripe stored contiguously, so
that this mode can be used.

For line drawing, the DMA controller needs to know the screen layout, specifically,
what number must be added to the address of a rightmost pixel in one column of FCM
characters in order to calculate the address of the pixel appearing immediately to its
right. Similarly, it must also know how much must be added to the address of a bottom
most pixel in one row of FCM characters in order to calculate the address of the pixel

82

appearing immediately below it. This allows for flexible screen layout options, and
arbitrary screen sizes. You must then also specify the slope of the line, and whether
the line has the X or Y as its major axis, and whether the slope is positive or negative.

The file test_290.cinthe https://github.com/mega65/mega65-tools repository pro-
vides an example of using these facilities to implement hardware accelerated line
drawing. This is very fast, as it draws lines at the full DMA fill speed, i.e., approxi-
mately 40,500,000 pixels per second.

Normally you have to setup a separate area of memory that contains the DMA list, and
then load the address of that area into the DMA address registers at $D70x. Because
the MEGAS5’s DMA controller is part of the CPU, it supports an additional mode that
is very convenient, called inline DMA list mode.

This mode works like Enhanced DMA mode, except that the DMA list is read starting
from the current value of the Program Counter (PC) register. To use this mode, write
any value to $D707, to immediately a trigger a DMA job, with the list in the bytes
immediately following the instruction that writes to $D707.

The DMA list can be a single job, or chained, as with any other DMA job. The real
magic is that the Program Counter gets set to the next address after the end of the
DMA list, and that the DMA list is read from the CPU's current memory mapping. This
means that you can execute code with DMA lists from any bank of memory, without
having to worry about which bank it is in.

For example, the following code would clear the C465-mode screen, before flashing
the border endlessly:

STA D707

«byte 508 ; end of job options
Jbyte 403 ;o fill

Jword 2000 ; count

Jword 50020 ; value

«byte 500 ; SPC bank

Jword 50800 ; dst

«byte 508 ; dst bank
byte 508 ; Cwd hi
cword 500008 ; modulo / ignored

INC $4020
JHE foo

83

https://github.com/mega65/mega65-tools

The MEGAG5 includes four channels of DMA-driven audio playback that can be used
in place of the direct digital audio registers at $D6F8-$DSFB. That is, you must select
which of these two sources to feed to the audio cross-bar mixer. This is selected via
the AUDEN signal ($D7 11 bit 7), which simultaneously enables the audio DMA function
in the processor, as well as instructing the audio cross-bar mixer to use the audio from
this instead of the $D6F8-$DSFB digital audio registers. If you wish to have no other
audio than the audio DMA channels, the audio cross-bar mixer can be bypassed, and
the DMA audio played at full volume by setting the NOMIX signal ($D7 11 bit 4). In that
mode no audio from the SIDs, FM, microphones or other sources will be available. All
other bits in $D7 11 should ordinarily be left clear, i.e., write $80 to $D7 11 to enable
audio DMA.

Two channels form the left digital audio channel, and the other two channels form the
right digital audio channel. It is these left and right channels that are then fed into the
MEGAG65's audio cross-bar mixer.

As the DMA controller is part of the processor of the MEGAS5, and the MEGAS5
does not have reserved bus slots for multi-media operations, the MEGAS5 uses idle
CPU cycles to perform background DMA. This requires that the MEGA65 CPU be set
to the “full speed” mode, i.e., approximately 40MHz. In this mode, there is a wait-
state whenever reading an operand from memory. Thus each instruction that loads
a byte from memory will create one implicit audio DMA slot. This is rarely a problem
in practice, except if the processor idles in a very tight loop. To ensure that audio
continues to play in the background, such loops should include a read instruction, such
as:

loop: LDA 51234 /7 Ensure loop has at least one idle cycle for
// audio DMA

JHP loop

Each of the four DMA channels is configured using a block of 16 registers at $D720,
$D730, $D740 and $D750, respectively. We will explain the registers for the first
channel, channel 0, at $D720 - $D72F.

Sample Address Management

To play an audio sample you must first supply the start address of the sample. Thisis a
24-bit address, and must be in the main chip memory of the MEGAG5. This is done by
writing the address into $D72A - $D72C. This is the address of the first sample value
that will be played. You must then provide the end address of the sample in $D727
- $D728. But note that this is is only 16 bits. This is because the MEGAS5 compares
only the bottom 16 bits of the address when checking if it has reached the end of a
sample. In practice, this means that samples cannot be more than 64KB in size. If
the sample contains a section that should be repeated, then the start address of the

84

repeating part should be loaded into $D721 - $D723, and the CHOLOOP bit should
be set ($D720 bit 6).

You can determine the current sample address at any time by reading the registers at
$D72A - $D72C. But beware: These registers are not latched, so it is possible that
the values may be updated as you read the registers, unless you stop the channel first
by clearing the CHOEN signal.

Sample Playback frequency and Volume

The MEGA45 controls the playback rate of audio DMA samples by using a 24-bit
counter. Whenever the 24-bit counter overflows, the next sample value is requested.
Sample speed control is achieved by setting the value added to this counter each
CPU cycle. Thus a value of $FFFFFF would result in a sample rate of almost 40.5
MHz. In practice, sample rates above a few megahertz are not possible, because
there are insufficient idle CPU cycles, and distorted audio will result. Even below this,
care must be taken to ensure that idle cycles come sufficiently often and dispersed
throughout the processor’s instruction stream to prevent distortion. At typical sample
rates below 16KHz and using 8-bit samples these effects are typically negligible for
normal instruction streams, and so no special action is normally required for typical
audio playback.

At the other end of the scale, sample rates as low as 40.5MHz/2%* = 2.4 samples

per second are possible. This is sufficiently low enough for even the most demanding
infra-sound applications.

Volume is controlled by setting $D729. Maximum volume is obtained with the value
$FF, while a value of $00 will etfectively mute the channel. The first two audio channels
are normally allocated to the left, and the second two to the right. However, the
MEGAG5 includes separate volume controls for the opposite channels. For example,
to play audio DMA channel 0 at full volume on both left and right-hand sides of the
audio output, set both $D729 and $D7 1C to $FF. This allows panning of the four audio
DMA channels.

Both the frequency and volume can be freely adjusted while a sample is playing to
produce various effects.

Pure Sine Wave

Where it is necessary to produce a stable sine wave, especially at higher frequencies,
there is a special mode to support this. By setting the CHOSINE signal, the audio
channel will play a 32 byte 16-bit sine wave pattern. The sample addresses still need
to be set, as though the sine wave table were located in the bottom 64 bytes of
memory, as the normal address generation logic is used in this mode. However, no
audio DMA fetches are performed when a channel is in this mode, thus avoiding all
sources of distortion due to irregular spacing of idle cycles in the processor’s instruction
stream.

85

This can be used to produce sine waves in both the audible range, as well as well into
the ultrasonic range, at frequencies exceeding 60,000Hz, provided that the MEGAS5
is connected to an appropriately speaker arrangement.

Sample playback control

To begin a channel playing a sample, set the CHOEN signal ($D720 bit 7). The sample
will play until its completion, unless the CHOLOOP signal has also been set. When a
sample completes playing, the CHOSTP flag will be set. The audio DMA subsystem
cannot presently generate interrupts.

Unlike on the Amiga™, the MEGA65 audio DMA system supports both 8 and 16-bit
samples. It also supports packed 4-bit samples, playing either the lower or upper
nibble of each sample byte. This allows two separate samples to occupy the same
byte, thus effectively halving the amount of space required to store two equal length
samples.

FO18 “DMAGIC” DMA CONTROLLER

HEX DEC Signal Description
ADDRLSB- |DMAgic DMA list address LSB, and

TRIG trigger DMA (when written)
5701 5041 ADDRMSB Ig/\i\ﬁ]\ 25# address high byte (address bits
DMA list address bank (address bits 148
- 22). Writing clears $D704.

D700 55040

D702 55042 ADDRBANK

MEGA65 DMA CONTROLLER
EXTENSIONS

HEX | DEC | DB/ | DB6 | DB5 | DB4 | DB3 | DB2 | DBi | DBO
D703 | 55043 B ENO18B
D704 | 55044 ADDRMB

D705 | 55045 ETRIC

D706 | 55046 ETRIGMAPD

D70E | 55054 ADDRLSB

D711 | 55057 | AUDEN | BLKD WASSL‘K NOMIX - AUDBLKTO

D71C | 55068 CHORVOL

D71D | 55069 CHIRVOL

continued ...

86

..continued

HEX | DEC [DB7 | DBé | DB5 | DB4 | DB3 | DB2 | DB1 | DBO
D71E | 55070 CH2lvVOL
D71F | 55071 CH3IVOL
D720 | 55072 | CHOEN |CHOLOOP[CHOSGN|[CHOSINE| CHOSTP| - | CHOSBITS
D721 [55073 CHOBADDRL
D722 [55074 CHOBADDRC
D725 [55075 CHOBADDRM
D724 | 55076 CHOFREQL
D725 | 55077 CHOFREQC
D726 [55078 CHOFREQM
D727 | 55079 CHOTADDRL
D728 [55080 CHOTADDRM
D729 | 55081 CHOVOLUME
D72A | 55082 CHOCURADDRL
D72B | 55083 CHOCURADDRC
D72C | 55084 CHOCURADDRM
D72D | 55085 CHOTMRADDRL
D72E [55086 CHOTMRADDRC
D72F | 55087 CHOTMRADDRM
D730 | 55088 | CHIEN [CHILOOP/CHISGN|CHISINE[CHISTP | - CHISBITS
D731 | 55089 CH 1BADDRL
D732 | 55090 CH1BADDRC
D733 [55091 CH 1BADDRM
D734 | 55092 CHIFREQL
D735 | 55093 CHIFREQC
D736 | 55094 CHI1FREQM
D737 | 55095 CH1TADDRL
D738 | 55096 CH 1TADDRM
D739 | 55097 CH1VOLUME
D73A | 55098 CH1CURADDRL
D73B | 55099 CH1CURADDRC
D73C [55100 CH1CURADDRM
D73D [55101 CH1TMRADDRL
D73E | 55102 CH1TMRADDRC
D73F | 55103 CH1TMRADDRM
D740 | 55104 | CH2EN [CH2LOOP CH2SGN|CH2SINE| CH2STP [- CH2SBITS
D741 [55105 CH2BADDRL
D742 [55106 CH2BADDRC
D743 | 55107 CH2BADDRM
D744 | 55108 CH2FREQL
D745 | 55109 CH2FREQC
D746 | 55110 CH2FREQM
continued ...

87

..continued

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO
D747 55111 CH2TADDRL
D748 55112 CH2TADDRM
D749 55113 CH2VOLUME
D74A | 55114 CH2CURADDRL
D74B 55115 CH2CURADDRC
D74C | 55116 CH2CURADDRM
D74D 55117 CH2TMRADDRL
D74E 55118 CH2TMRADDRC
D74F 55119 CH2TMRADDRM
D750 55120 | CH3EN |CH3LOOP CH3SGN |CH3SINE | CH3STP - CH3SBITS
D751 55121 CH3BADDRL
D752 55122 CH3BADDRC
D753 55123 CH3BADDRM
D754 | 55124 CH3FREQL
D755 55125 CH3FREQC
D756 55126 CH3FREQM
D757 55127 CH3TADDRL
D758 55128 CH3TADDRM
D759 55129 CH3VOLUME
D75A | 55130 CH3CURADDRL
D75B | 55131 CH3CURADDRC
D75C | 55132 CH3CURADDRM
D75D | 55133 CH3TMRADDRL
D75E 55134 CH3TMRADDRC
D75F 55135 CH3TMRADDRM

« ADDRLSB DMA list address low byte (address bits 0 - 7) WITHOUT STARTING A
DMA JOB (used by Hypervisor for unfreezing DMA-using tasks)

« ADDRMB DMA list address mega-byte

+ AUDBLKTO Audio DMA block timeout (read only) DEBUG

+ AUDEN Enable Audio DMA

+ AUDWRBLK Audio DMA block writes (samples still get read)
+ BLKD Audio DMA blocked (read only) DEBUG

+ CHORVOL Audio DMA channel 0 right channel volume

+ CH1RVOL Audio DMA channel 1 right channel volume

+ CH2LVOL Audio DMA channel 2 left channel volume

+ CH3LVOL Audio DMA channel 3 left channel volume

88

CHXBADDRC Audio DMA channel X base address middle byte
CHXBADDRL Audio DMA channel X base address LSB
CHXBADDRM Audio DMA channel X base address MSB
CHXCURADDRC Audio DMA channel X current address middle byte
CHXCURADDRL Audio DMA channel X current address LSB
CHXCURADDRM Audio DMA channel X current address MSB
CHXEN Enable Audio DMA channel X

CHXFREQC Audio DMA channel X frequency middle byte
CHXFREQL Audio DMA channel X frequency LSB

CHXFREQM Audio DMA channel X frequency MSB

CHXLOOP Enable Audio DMA channel X looping

CHXSBITS Audio DMA channel X sample bits (11=16, 10=8, 01=upper nybl,
00=lower nybl)

CHXSGN Enable Audio DMA channel X signed samples

CHXSINE Audio DMA channel X play 32-sample sine wave instead of DMA data
CHXSTP Audio DMA channel X stop flag

CHXTADDRL Audio DMA channel X top address LSB

CHXTADDRM Audio DMA channel X top address MSB

CHXTMRADDRC Audio DMA channel X timing counter middle byte
CHXTMRADDRL Audio DMA channel X timing counter LSB

CHXTMRADDRM Audio DMA channel X timing counter MSB

CHXVOLUME Audio DMA channel X playback volume

ENO 18B DMA enable FO 18B mode (adds sub-command byte)

ETRIG Set low-order byte of DMA list address, and trigger Enhanced DMA job,
with list address specified as 28-bit flat address (uses DMA option list)

ETRIGMAPD Set low-order byte of DMA list address, and trigger Enhanced DMA
job, with list in current CPU memory map (uses DMA option list)

NOMIX Audio DMA bypasses audio mixer

89

UNIMPLEMENTED FUNCTIONALITY

The MEGA65's DMAgic does not currently support either memory-swap or mini-term
operations.

Miniterms were intended for bitplane blitting, which is not required for the MEGAS5
which offers greatly advanced character modes and stepped and fractional DMA ad-
dress incrementing which allows efficient texture copying and scaling. Also there ex-
ists no known software which ever used this facility, and it remains uncertain if it was
ever implemented in any revision of the DMAgic chip used in C65 prototypes.

The memory-swap operation is intended to be implemented, but can be worked around
in the meantime by copying the first region to a 3rd region that acts as a temporary
buffer, then copying the 2nd region to the Tst, and the 3rd to the 2nd.

90

CHAPTER 5

6526 Complex Interface
Adapter (CIA) Registers

® CIA 6526 Registers

® CIA 6526 Hypervisor Registers

92

CIA 6526 REGISTERS

CIA1 Registers

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DBI | DBO
DC00 | 56320 PORTA

DCOT | 56321 PORTB

DC02 | 56322 DDRA

DC03 | 56325 DDRB

DC04 | 56524 TIMERA

DC05 | 56525 TIMERA

DC06 | 56526 TIMERB

DCO7 | 56527 TIMERB

DC08 | 56328 - TODJF

DC09 | 56329 - TODSEC

DCOA | 56330 - TODMIN

DCOB | 56331 | 1D - TODHOUR

DCOC | 56352 SDR

DCOD | 56335 | IR ISRCLR FIG | SP | AlRM | 1B TA
DCOE | 56554 | TOD50 | SPMOD | IMODA | - | RMODA | OMODA | PBONA | SIRTA
DCOF | 56535 | TODEDIT IMODB [OAD | RMODB | OMODB | PBONB | SIRTB

« ALRM TOD alarm

* DDRA Port A DDR

+ DDRB Port B DDR

* FLG FLAG edge detected
* IMODA Timer A tick source
+ IMODB Timer B tick source

* IR Interrupt flag

* ISRCLR Placeholder - Reading clears events

+ LOAD Strobe input to force-load timers
+ OMODA Timer A toggle or pulse

« OMODB Timer B toggle or pulse

* PBONA Timer A PB6 out

* PBONB Timer B PB7 out

+ PORTA Port A

93

+ PORTB Port B

* RMODA Timer A one-shot mode

+ RMODB Timer B one-shot mode

+ SDR shift register data register(writing starts sending)

« SP shift register full/empty

+ SPMOD Serial port direction

+ STRTA Timer A start

* STRTB Timer B start

 TA Timer A underflow

+ TB Timer B underflow

« TIMERA Timer A counter (16 bit)
« TIMERB Timer B counter (16 bit)
» TOD50 50/60Hz select for TOD clock
« TODAMPM TOD PM flag

« TODEDIT TOD alarm edit

+ TODHOUR TOD hours

« TODJIF TOD tenths of seconds

* TODMIN TOD minutes

« TODSEC TOD seconds

CIA2 Registers

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB | DBO
DDO0 | 56576 PORTA

DDOT | 56577 PORTB

DD02 | 56578 DDRA

DDO5 | 56579 DDRB

DD04 | 56580 TIMERA

DDO5 | 56581 TIMERA

DDO6 | 56582 TIMERB

DDO7 | 56585 TIMERB

DDO8 | 56584 - TODJF
DD09 | 56585 - TODSEC

DDOB | 56587 | Ao - TODHOUR
continued ...

94

..continued

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DBI | DBO
DDOC | 56588 SDR

DDOD 56589 IR ISRCLR FLG SP ALRM B TA
DDOE 56590 | TOD50 SPMOD‘ IMODA - RMODA | OMODA | PBONA | STRTA
DDOF | 56591 | TODEDIT IMODB LOAD | RMODB | OMODB | PBONB | STRTB

« ALRM TOD alarm

+ DDRA Port A DDR

* DDRB Port B DDR

* FLG FLAG edge detected
+ IMODA Timer A tick source
+ IMODB Timer B tick source

* IR Interrupt flag

+ ISRCLR Placeholder - Reading clears events
+ LOAD Strobe input to force-load timers

« OMODA Timer A toggle or pulse

+ OMODB Timer B toggle or pulse

* PBONA Timer A PB6 out

* PBONB Timer B PB7 out

* PORTA Port A

* PORTB Port B

* RMODA Timer A one-shot mode

« RMODB Timer B one-shot mode

+ SDR shift register data register(writing starts sending)

+ 8P shift register full/empty

* SPMOD Serial port direction

» STRTA Timer A start

* STRTB Timer B start

+ TA Timer A underflow

* TB Timer B underflow

« TIMERA Timer A counter (16 bit)

95

 TIMERB Timer B counter (16 bit)

TOD50 50/60Hz select for TOD clock

« TODAMPM TOD PM flag

TODEDIT TOD alarm edit
TODHOUR TOD hours

TODJIF TOD tenths of seconds
TODSEC TOD seconds

CIA 6526 HYPERVISOR REGISTERS

In addition to the standard CIA registers available on the C64 and Cé5, the MEGA&S
provides an additional set of registers that are visible only when the system is in Hyper-
visor Mode. These additional registers allow the internal state of the CIA to be more
fully extracted when freezing, thus allowing more programs to function correctly after
being frozen. They are not visible when using the MEGAS5 normally, and can be safely

ignored by programmers who are not programming the MEGA65 in Hypervisor Mode.

CIA1 Hypervisor Registers

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DBI | DBO
DC10 | 56336 TALATCH

DC11 | 56337 TALATCH

DC12 | 56338 TALATCH

DC13 | 56339 TALATCH

DC14 | 56340 TALATCH

DC15 | 56341 TALATCH

DC16 | 56342 TALATCH

DC17 | 56343 TALATCH

DC18 | 56344 | IMFLC | IMSP | IMALRM | IMTB TODJIF
DC19 | 56345 TODSEC

DCIA | 56346 TODMIN

DCIB | 56347 /IAOAF'?A‘A TODHOUR

DCIC | 56348 | D2O%° ALRMJIF

DCID | 56349 ALRMSEC

DCIE | 56350 ALRMMIN

DCIF | 56351 2&%‘ ALRMHOUR

96

« ALRMAMPM TOD Alarm AM/PM flag

+ ALRMHOUR TOD Alarm hours value

« ALRMJIF TOD Alarm 10ths of seconds value (actually all 8 bits)
« ALRMMIN TOD Alarm minutes value

« ALRMSEC TOD Alarm seconds value

* DDOODELAY Enable delaying writes to $DD00 by 3 cycles to match real 6502
timing

* IMALRM Interrupt mask for TOD alarm

* IMFLG Interrupt mask for FLAG line

* IMSP Interrupt mask for shift register (serial port)
* IMTB Interrupt mask for Timer B

* TALATCH Timer A latch value (16 bit)

« TODAMPM TOD AM/PM flag

« TODHOUR TOD hours value

« TODJIF TOD 10ths of seconds value

« TODMIN TOD Alarm minutes value

« TODSEC TOD Alarm seconds value

CIA2 Hypervisor Registers

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DBI | DBO
DD10 | 56592 TALATCH

DD11 | 56593 TALATCH

DD12 | 56594 TALATCH

DD13 | 56595 TALATCH

DD14 | 56596 TALATCH

DD15 | 56597 TALATCH

DD16 | 56598 TALATCH

DD17 | 56599 TALATCH

DD18 | 56600 | IMFLC | IMSP | IMALRM | IMTB TODJIF
DD19 | 56601 TODSEC

DDA | 56602 TODMIN

DDIB | 56603 ;AOAE,;\ TODHOUR

DDIC | 56604 %[éfg\(‘ ALRMJIF

DDID | 56605 ALRMSEC

continued ...

97

..continued

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DBI | DBO

DD1E 56606

ALRMMIN

ALRM-

DD1F | 56607 AMPM

ALRMHOUR

« ALRMAMPM TOD Alarm AM/PM flag
« ALRMHOUR TOD Alarm hours value

« ALRMJIF TOD Alarm 10ths of seconds value (actually all 8 bits)

« ALRMMIN TOD Alarm minutes value
« ALRMSEC TOD Alarm seconds value

« DDOODELAY Enable delaying writes to $DD00 by 3 cycles to match real 6502

timing

* IMALRM Interrupt mask for TOD alarm

* IMFLG Interrupt mask for FLAG line

* IMSP Interrupt mask for shift register (serial port)

* IMTB Interrupt mask for Timer B

« TALATCH Timer A latch value (16 bit)
« TODAMPM TOD AM/PM flag

« TODHOUR TOD hours value

« TODJIF TOD 10ths of seconds value
« TODMIN TOD Alarm minutes value

+ TODSEC TOD Alarm seconds value

98

CHAPTER 6

4551 UART, GPIO and Uiiliiy
Controller

® C65 6551 UART Registers

® 4551 General Purpose 1/O & Miscella-

neous Interface Registers

100

C65 6551 UART REGISTERS

HEX | DEC DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO
D600 | 54784 DATA

D401 | 54785 FRMERR | PTYERR RXR%\KF‘ RXRDY
D602 | 54786 | TXEN | RXEN | SYNCMOD CHARSZ PTYEN [PTYEVEN
D603 | 54787 DIVISOR

D604 | 54788 DIVISOR

D605 | 54789 |IMTXIRQ [IMRXIRQ | IMTXNMI | IMRXNMI

D606 | 54790 | IFTXIRQ | IFRXIRQ | IFTXNMI | IFRXNMI

CHARSZ UART character size: 00=8, 01=7, 10=6, 11=5 bits per byte
DATA UART data register (read or write)

DIVISOR UART baud rate divisor (16 bit). Baud rate = 7.0937 5MHz / DIVISOR,
unless MEGAG65 fast UART mode is enabled, in which case baud rate = 80MHz
/ DIVISOR

FRMERR UART RX framing error flag (clear by reading $D600)

IFRXIRQ UART interrupt flag: IRQ on RX (not yet implemented on the MEGASS5)
IFRXNMI UART interrupt flag: NMI on RX (not yet implemented on the MEGAS5)
IFTXIRQ UART interrupt flag: IRQ on TX (not yet implemented on the MEGAS5)
IFTXNMI UART interrupt flag: NMI on TX (not yet implemented on the MEGA&5)
IMRXIRQ UART interrupt mask: IRQ on RX (not yet implemented on the MEGA45)
IMRXNMI UART interrupt mask: NMl on RX (not yet implemented on the MEGAS5)
IMTXIRQ UART interrupt mask: IRQ on TX (not yet implemented on the MEGAG5)
IMTXNMI UART interrupt mask: NMI on TX (not yet implemented on the MEGA&5)
PTYEN UART Parity enable: 1=enabled

PTYERR UART RX parity error flag (clear by reading $D600)

PTYEVEN UART Parity: 1=even, O=odd

RXEN UART enable receive

RXOVRRUN UART RX overrun flag (clear by reading $D400)

RXRDY UART RX byte ready flag (clear by reading $D400)

SYNCMOD UART synchronisation mode flags (00=RX & TX both async, 0 1=RX
sync, TX async, 1x=TX sync, RX async (unused on the MEGA45)

101

* TXEN UART enable transmit

4551 GENERAL PURPOSE I/0 &
MISCELLANEOUS INTERFACE
REGISTERS

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DBI | DBO

D609 | 54793 N UFAST

soA | 54794 MODKEY-] MOD- | MOD- | MOD- | MODK- | MOD- | MOD-
KEYQUEUE CAPS |KEYSCRL| KEYALT |[KEYMEGA| EYCTRL |KEYRSHFT|KEYLSHFT

DGOB | 54795 | OSKZEN | OSKZON PORTF

DG0C | 54796 PORTFDDR PORTFDDR

DGOD | 54797 | HDSCL | HDSDA | SDBSH | SDCS | SDCLK | SDDATA | RST41 |CONNA1

DGOE | 54798 BASHDDR

D6OF | 54799 CE’;%;EY OSKDIM | REALHW) KEYUP | KEYLEFT

D610 | 54800 ASCIKEY

D611 | 54801 |MDISABLE] MCAPS | MSCRL | MALT | MMEGA | MCTRL | MRSHFT | MLSHFT

D612 | 54802 | LIOYB | LIOYA |JOYSWAP ogﬁ%E' .

D615 | 54805 | OSKEN VIRTKEY 1

D616 | 54806 | OSKALT VIRTKEY2

D617 | 54807 | OSKTOP VIRTKEY3

D618 | 54808 KSCNRATE

D619 | 54809 PETSCIKEY

DG1A | 54810 SYSCTL

D61D | 54813 KEg,biD‘ KEYLEDREG

DGIE | 54814 KEYLEDVAL

D620 | 54816 POTAX

D621 | 54817 POTAY

D622 | 54818 POTBX

D625 | 54819 POTBY

D625 | 54821 1210

D626 | 54822 12TH

D627 | 54823 J21LDDR

D628 | 54824 BOARDMINOR J2 THDDR

D629 | 54825 M6 5MODEL

+ ACCESSKEY Enable accessible keyboard input via joystick port 2 fire button

102

ASCIIKEY Top of typing event queue as ASCII. Write to clear event ready for
next.

BASHDDR Data Direction Register (DDR) for $D60D bit bashing port.
BOARDMINOR Read PCB minor revision (R5+ only, else reads zeroes)

CONNA41 Internal 1541 drive connect (1=connect internal 1541 drive to IEC
bus)

HDSCL HDMI 12C control interface SCL clock

HDSDA HDMI 12C control interface SDA data line
J21H J21 pins 11 - 14 input/output values

J21HDDR J21 pins 11 - 14 data direction register
J21L J21 pins 1 -6, 9 - 10 input/output values
J21LDDR J21 pins 1 - 6, 9 - 10 data direction register
JOYSWAP Exchange joystick ports 1 & 2

KEYLEDENA Keyboard LED control enable
KEYLEDREG Keyboard LED register select (R,G,B channels x 4= 0 to 11)
KEYLEDVAL Keyboard LED register value (write only)
KEYLEFT Directly read C65 Cursor left key

KEYQUEUE 1 = Typing event queue is non-empty. Write O to this bit to flush
queue.

KEYUP Directly read C65 Cursor up key

KSCNRATE Physical keyboard scan rate ($00=50MHz, $FF=~200KHz)

LJOYA Rotate inputs of joystick A by 180 degrees (for left handed use)
LJOYB Rotate inputs of joystick B by 180 degrees (for left handed use)

M65MODEL MEGAS5 model ID. Can be used to determine the model of
MEGAG&S5 a programme is running on, e.g., to enable touch controls on MEGA-
phone.

MALT ALT key state (immediate; read only).

MCAPS CAPS LOCK key state (immediate; read only).
MCTRL CTRL key state (immediate; read only).
MDISABLE Disable modifiers.

MLSHFT Left shift key state (immediate; read only).
MMEGA MEGA /C= key state (immediate; read only).

103

MODKEYALT ALT key state at top of typing event queue. 1 = held during event.

MODKEYCAPS CAPS LOCK key state at top of typing event queue. 1 = held
during event.

MODKEYCTRL CTRL key state at top of typing event queue. 1 = held during
event.

MODKEYLSHFT Left shift key state at top of typing event queue. 1 = held during
event.

MODKEYMEGA MEGA/C= key state at top of typing event queue. 1 = held
during event.

MODKEYRSHFT Right shift key state at top of typing event queue. 1 = held

during event.

MODKEYSCRL NOSCRL key state at top of typing event queue. 1 = held during
event.

MRSHFT Right shift key state (immediate; read only).
MSCRL NOSCRL key state (immediate; read only).

OSKALT Display alternate on-screen keyboard layout (typically dial pad for
MEGAG5 telephone)

OSKDEBUG Debug OSK overlay (WRITE ONLY)

OSKDIM Light or heavy dimming of background material behind on-screen key-
board

OSKEN Enable display of on-screen keyboard composited overlay

OSKTOP 1=Display on-screen keyboard at top, 0=Disply on-screen keyboard at
bottom of screen.

OSKZEN Display hardware zoom of region under first touch point for on-screen
keyboard

OSKZON Display hardware zoom of region under first touch point always

PETSCIIKEY Top of typing event queue as PETSCII. Write to clear event ready
for next.

PORTF PMOD port A on FPGA board (data) (Nexys4 boards only)

PORTFDDR PMOD port A on FPGA board (DDR)

POTAX Read Port A paddle X, without having to fiddle with SID/CIA settings.
POTAY Read Port A paddle Y, without having to fiddle with SID/CIA settings.
POTBX Read Port B paddle X, without having to fiddle with SID/CIA settings.
POTBY Read Port B paddle Y, without having to fiddle with SID/CIA settings.

104

REALHW Set to 1 if the MEGAGS is running on real hardware, set to 0 if emulated
(Xemu) or simulated (ghdl)

RST41 Internal 1541 drive reset (1=reset, O=operate)
SDBSH Enable SD card bitbash mode

SDCLK SD card SCLK

SDCS SD card CS_BO

SDDATA SD card MOSI/MISO

SYSCTL System control flags (target specific)

UFAST C65 UART BAUD clock source: 1 = 7.09375MHz, 0 = 80MHz (VIC-IV
pixel clock)

VIRTKEY 1 Set to $7F for no key down, else specify virtual key press.
VIRTKEY 2 Set to $7F for no key down, else specify 2nd virtual key press.
VIRTKEY3 Set to $7F for no key down, else specify 3nd virtual key press.

105

106

CHAPTER ;

45E 100 Fast Ethernet
Controller

® Overview
® Memory Mapped Registers

® Example Programs

108

The 45E100 is a new and simple Fast Ethernet controller that has been designed
specially for the MEGAS5 and for 8-bit computers generally. In addition to supporting
100Mbit Fast Ethernet, it is radically different from other Ethernet controllers, such as
the RR-NET.

The 45E100 includes four receive buffers, allowing upto three frames to be received
while another is being processed, or to allow less frequent processing of interrupts.
These receive buffers can be memory mapped, and also directly accessed using the
MEGAG5’s DMA controller. Together with automatic CRC32 checking on reception,
and automatic CRC32 generation for transmit, these features considerably reduce
the burden on the processor, and make it much simpler to write ethernet-enabled
programs.

The 45E 100 also supports true full-duplex operation at 100Mbit per second, allowing
for total bi-directional throughput exceeding 100Mbit per second. The MAC address
is software configurable, and promiscuous mode is supported, as are individual control
of the reception of broadcast and multi-cast Ethernet frames.

The 45E100 also supports both transmit and receive interrupts, allowing greatly im-
proved real-world performance. When especially low latency is required, it is also
possible to immediately abort the transmission of the current Ethernet frame, so that
a higher-priority frame can be immediately sent. These features combine to enable
sub-millisecond round trip latencies, which can be of particular value for interactive
applications, such as multi-player network games.

Differences to the RR-NET and similar solutions

The RR-NET and other Ethernet controllers for the Commodore™ line of 8-bit home
computers generally use an Ethernet controller that was designed for 16-bit PCs, but
that also supports a so-called “8-bit mode,” which suffers from a number of disadvan-
tages. These disadvantages include the lack of working interrupts, as well as processor
intensive access to the Ethernet frame buffers. The lack of interrupts forces programs
to use polling to check for the arrival of new Ethernet frames. This, together with the
complexities of accessing the buffers results in an Ethernet interface that is very slow,
and whose real-world throughput is considerably less than its theoretical 10Mbits per
second. Even a Commodore 64 with REU cannot achieve speeds above several tens
of kilobytes per second.

In contrast, the 45E100 supports both RX (Ethernet frame received) interrupts and
TX (ready to transmit) interrupts, freeing the processor from having to poll the device.
Because the 45E100 supports RX interrupts, there is no need for large numbers of
receive buffers, which is why the 45E 100 requires only two RX buffers to achieve very
high levels of performance.

Further, the 45E100 supports direct memory mapping of the Ethernet frame buffers,
allowing for much more efficient access, including by DMA. Using the MEGA&S5's in-

109

tegrated DMA controller it is quite possible to achieve transfer rates of several mega-
bytes per second - some 100x faster than the RR-NET.

Theory of Operation: Receiving Frames

The 45E100 is simple to operate: To begin receiving Ethernet frames, the programmer
needs only to clear the RST and TXRST bits (bit 0 of register $DSEQ) to ensure that the
Ethernet controller is reset, and then set these bits to 1, to release the controller from
the reset state. It will then auto-negotiate connection at the highest available speed,
typically 100Mbit, full-duplex.

If you wish to simply poll for the arrival of ethernet frames, check the RXQ bit (bit 5 of
$DSE1). If it is set, then there is at least one frame that has been received. To access
the next frame that has been received, write $01 to $DSE 1, and then $03 to $DSE1.
This will rotate the ring of receive buffers, to make the next received frame accessible
by the processor. The receive buffer that was previously accessible by the processor
is marked free, and the 45E100 will use it to receive another ethernet frame when
required.

Because the 45E100 has four receive buffers, it is possible that to process multiple
frames in succession by following this procedure. If all receive buffers contain received
frames, and the processor has not accepted them, then the RXBLKD signal will be
asserted, so that the processor knows that it if any more frames are received, they
will be lost. Programmers should take care to avoid this situation. As the 45E100
supports receive interrupts, this is generally easy to manage - but don't underestimate
how often ethernet frames can arrive on a 100mbit Fast Ethernet connection: If a
sender sends a continuous stream of minimum-length ethernet frames, they can arrive
every 6 microseconds or so! While, it is unlikely that you will have to deal with such a
high rate of packet reception, you should anticipate the need to process packets at
least every milli-second. In particular, a once-per-frame CIA or raster IRQ may cause
some packets to be lost, more than three arrive in a 16 - 20 ms video frame. The
RXBLKD signal can be used to determine if this situation is likely to have occurred. But
note that it indicates only when all receive buffers are occupied, not if any further
frames arrived while there were no free receive buffers.

The receive buffers are 2KB bytes each, and can each hold only one received ethernet
frame at a time. This is different to some ethernet controllers that use their total receive
buffer memory as a simple ring buffer. The reason for this is to keep the mechanism
for programmers as simple as possible. By having the fixed buffers, it means that the
controller can memory map the received ethernet frames in exactly the same location
each time, making it possible to write much simpler receiver programs, because the
location of the received ethernet frames can be assumed to be constant.

The structure of a receive buffer containing an ethernet frame is quite simple: The first
two bytes indicate the length of the received frame. The frame then follows immedi-
ately. The effective Maximum Transport Unit (MTU) length is 2,042 bytes, as the last
four bytes are occupied by the CRC32 checksum of the received ethernet frame. The
layout of the receive buffers is thus as follows:

110

HEX PDEC [Length[Description

9000 10 1 The low byte of the length of the received
ethernet frame.

The lower four bits contain the upper bits of
the length of the received ethernet frame. Bit
4 is set if the received ethernet frame is a
multi-cast frame. Bit 5 if it is a broadcast
frame. Bit & is set if the frame’s destination
address matches the 45E100’s programmed
MAC address. Bit 7 is set if the CRC32 check
for the received frame failed, i.e., that the
frame is either truncated or was corrupted in
transit.

0002 -2 - 5042 The received frame. Frames shorter than
O7FB [2,043 | 2,042 bytes will begin at offset 2.

Reserved space for holding the CRC32 code
during reception. The CRC32 code is,
07FC-2,044-| 4 however, always located directly after the
O7FF [2,047 received frame, and thus will only occupy this
space if the received frame is more than
2,038 bytes long. ”

—
j—

0001

Because of the very rapid rate at which Fast Ethernet frames can be received, a pro-
grammer should use the receive interrupt feature, enabled by setting RXQEN (bit 7
of $DSET). Polling is possible as an alternative, but is not recommended with the
45E100, because at the 100Mbit Fast Ethernet speed, packets can arrive as often
as every 5 microseconds. Fortunately, at the MEGA65's 40MHz full speed mode, and
using the 20MB per second DMA copy functionality, it is possible to keep up with such
high data rates.

Accessing the Ethernet Frame Buffers

Unlike on the RR-NET, the 45E100's ethernet frame buffers are able to be memory
mapped, allowing rapid access via DMA or through assembly language programs. It
is also possible to access the buffers from BASIC with some care.

The frame buffers can either be accessed from their natural location in the MEGAS5’s
extended address space at address $FFDE800 - $FFDEFFF, or they can be mapped
into the normal C64/C65 $D000 1/O address space. Care must be taken as map-
ping the ethernet frame buffers into the $D000 /O address space causes all other
|/O devices to unavailable during this time. Therefore ClA-based interrupts MUST be
disabled before doing so, whether using BASIC or machine code. Therefore when
programming in assembly language or machine code, it is recommended to use the
natural location, and to access this memory area using one of the three mechanisms
for accessing extended address space, which are described in the MEGAS5 Book,
Accessing memory beyond the TMB point (subsection J).

The method of disabling interrupts differs depending on the context in which a program
is being written. For programs being written using C64-mode’s BASIC 2, the following
will work:

POKES6333 ,127: REM DISABLE CIA TIMER IRQS

While for MEGA&5's BASIC 65, the following must instead be used, because a VIC-III
raster interrupt is used instead of a ClA-based timer interrupt:

POKES3274 ,0: REM DISABLE VIC-II/IIT/IV RASTER IRQS

Once this has been done, the I/O context for the ethernet controller can be activated
by writing $45 (69 in decimal, equal to the character 'E' in PETSCII)) and $54 (84 in
decimal, equal to the character 'T" in PETSCII) into the VIC-IV's KEY register ($D02F,
53295 in decimal), for example:

POKES3295 , ASC("E"): POKESI295 , ASC("T™)

At this point, the ethernet RX buffer can be read beginning at location $D000 (53248
in decimal), and the TX buffer can be written to at the same address. Refer to ‘Theory
of Operation: Receiving Frames' above for further explanation on this.

Once you have finished accessing the ethernet frame buffer, you can restore the nor-
mal C64, C65 or MEGASS5 |/O context by writing to the VIC-III/IV's KEY register. In
most cases, it will make the most sense to revert to the MEGAS5's |/O context by
writing $47 (7 1 decimal) in and $53 (83 in decimal) to the KEY register, for example:

POKES3295 , ASC("G"): POKESI295 , ASC("S™)

Finally, you should then re-enable interrupts, which will again depend on whether you
are programming from Cé4 or C65-mode. For C64-mode:

POKES6333 ,129

For C65-mode it would be:
POKES3274 ,129

Theory of Operation: Sending Frames

Sending frames is similarly simple: The program must simply load the frame to be trans-
mitted into the transmit buffer, write its length into TXSZLSB and TXSZMSB registers,
and then write $0 1 into the COMMAND register. The frame will then begin to transmit,
as soon as the transmitter is idle. There is no need to calculate and attach an ethernet
CRC32 field, as the 45E 100 does this automatically.

112

Unlike for the receiver, there is only one frame buffer for the transmitter (this may be
changed in a future revision). This means that you cannot prepare the next frame until
the previous frame has already been sent. This slightly reduces the maximum data
throughput, in return for a very simple architecture.

Also, note that the transmit buffer is write-only from the processor bus interface. This
means that you cannot directly read the contents of the transmit buffer, but must load
values “blind”. Finally, the 45E100 allows you to send ethernet.

Advanced Features

In addition to operating as a simple and efficient ethernet frame transceiver, the
45E100 includes a number of advanced features, described here.

Broadcast and Multicast Traffic and Promiscuous Mode

The 45E 100 supports filtering based on the destination Ethernet address, i.e., MAC
address. By default, only frames where the destination Ethernet address matches
the ethernet address programmed into the MACADDR 1 - MACADDRS registers will be
received. However, if the MCST bit is set, then multicast ethernet frames will also
be received. Similarly, setting the BCST bit will allow all broadcast frames, i.e., with
MAC address ff:ff:ff:tf:ff:ff, to be received. Finally, if the NOPROM bit is cleared, the
A5E100 disables the filter entirely, and will receive all valid ethernet frames.

Debugging and Diagnosis Features

The 45E 100 also supports several features to assist in the diagnosis of ethernet prob-
lems. First, if the NOCRC bit is set, then even ethernet frames that have invalid CRC32
values will be received. This can help debug faulty ethernet devices on a network.

If the STRM bit is set, the ethernet transmitter transmits a continuous stream of de-
bugging frames supplied via a special high-bandwidth logging interface. By default,
the 45E100 emits a stream of approximately 2,200 byte ethernet frames that con-
tain compressed video provided by a VIC-IV or compatible video controller that sup-
ports the MEGAG5 video-over-ethernet interface. By writing a custom decoder for this
stream of ethernet frames, it is possible to create a remote display of the MEGAS5 via
ethernet. Such a remote display can be used, for example, to facilitate digital capture
of the display of a MEGAG5.

The size and content of the debugging frames can be controlled by writing special
values to the COMMAND register. Writing $F 1 allows the selection of frames that are
1,200 bytes long. While this reduces the performance of the debugging and streaming
features, it allows the reception of these frames on systems whose ethernet controllers
cannot be configured to receive frames of 2,200 bytes.

If the STRM bit is set and bit 2 of $DSE 1 is also set, a compressed log of instructions
executed by the 45gs02 CPU will instead be streamed, if a compatible processor is
connected to this interface. This mechanism includes back-pressure, and will cause
the 45gs02 processor to slowdown, so that the instruction data can be emitted. This

113

typically limits the speed of the connected 45gs02 processor to around SMHz, de-
pending on the particular instruction mix.

Note also that the status of bit 2 of $DEE 1 cannot currently be read directly. This may
be corrected in a future revision.

Finally, if the video streaming functionality is enabled, this also enables reception of
synthetic keyboard events via ethernet. These are delivered to the MEGAS5's Keyboard
Complex Interface Adapter (KCIA), allowing full remote interaction with a MEGAGS via
its ethernet interface. This feature is primarily intended for development.

MEMORY MAPPED REGISTERS

The 45E100 Fast Ethernet controller is a MEGAS 5-specific feature. It is therefore only
available in the MEGA&5 | /O context. This is enabled by writing $53 and then $47 to
VIC-IV register $DO2F. If programming in BASIC, this can be done with:

POKES3295 , ASC("G"): POKESI295 , ASC ("S™)

The 45E100 Fast Ethernet controller has the following registers

HEX | DEC | DB7 | DB6 | DBS | DB4 | DB3 | DB2 | DB1 DBO
DSEO | 55008 | TXIDLE | RXBLKD = RCENABLEDPRXDV | DRXD | TXRST RST
DSE1 | 55009 | RXQEN | TXQEN | RXQ TXQ STRM RXBF -
DSE2 | 55010 TXSZLSB

DSE3 | 55011 TXSZMSB

D6E4 | 55012 COMMAND

D6E5 | 55013 RXPH MCST | BCST TXPH NOCRC |NOPROM
DSES | 55014 MIIMPHY MIMREG

D6E7 | 55015 MIIMVLSB

D6E8 | 55016 MIMVMSB

DSE9 | 55017 MACADDR]1

DSEA | 55018 MACADDR?2

DSEB | 55019 MACADDR3

DSEC | 55020 MACADDR4

DSED | 55021 MACADDRS

DSEE | 55022 MACADDR6

BCST Accept broadcast frames
« COMMAND Ethernet command register (write only)

DRXD Read ethernet RX bits currently on the wire
« DRXDV Read ethernet RX data valid (debug)

114

« MACADDRX Ethernet MAC address

« MCST Accept multicast frames

* MIIMPHY Ethernet MIIM PHY number (use O for Nexys4, 1 for MEGAS5 r1 PCBs)
* MIIMREG Ethernet MIIM register number

« MIIMVLSB Ethernet MIIM register value (LSB)

« MIIMVMSB Ethernet MIIM register value (MSB)

+ NOCRC Disable CRC check for received packets

* NOPROM Ethernet disable promiscuous mode

« RCENABLED (read only) Ethernet remote control enable status

« RST Write 0 to hold ethernet controller under reset

* RXBF Number of free receive buffers

* RXBLKD Indicate if ethernet RX is blocked until RX buffers freed

* RXPH Ethernet RX clock phase adjust

« RXQ Ethernet RX IRQ status

* RXQEN Enable ethernet RX IRQ

+ STRM Enable streaming of CPU instruction stream or VIC-IV display on ethernet
« TXIDLE Ethernet transmit side is idle, i.e., a packet can be sent.

« TXPH Ethernet TX clock phase adjust

+ TXQ Ethernet TX IRQ status

« TXQEN Enable ethernet TX IRQ

« TXRST Write O to hold ethernet controller transmit sub-system under reset
« TXSZLSB TX Packet size (low byte)

+ TXSZMSB TX Packet size (high byte)

COMMAND register values

The following values can be written to the COMMAND register to perform the de-
scribed functions. In normal operation only the STARTTX command is required, for
example, by performing the following POKE:

POKESSE12 ,1

115

HEX

DEC

Signal

Description

00

STOPTX

Immediately stop transmitting the
current ethernet frame. Will cause a
partially sent frame to be received,
most likely resulting in the loss of that
frame.

01

STARTTX

Transmit packet

DO

208

RXNORMAL

Disable the effects of RXONLYONE

D4

212

DEBUGVIC

Select VIC-IV debug stream via
ethernet when $DSE 1.3 is set

DC

220

DEBUGCPU

Select CPU debug stream via ethernet
when $D6E 1.3 is set

DE

222

RXONLYONE

Receive exactly one ethernet frame
only, and keep all signals states (for
debugging ethernet sub-system)

F1

241

FRAME 1K

Select TKiB frames for video/cpu
debug stream frames (for receivers that
do not support MTUs of greater than
2KiB)

F2

242

FRAME2K

Select 2KiB frames for video/cpu
debug stream frames, for optimal
performance.

EXAMPLE PROGRAMS

Example programs for the ethernet controller exist in imperfect states for in the
MEGAGS Core repository on github in the src/tests and src/examples directories.

If you wish to use the ethernet controller for TCP/IP traffic, you may wish to examine
the port of WeelP to the MEGA&S5 at https://github.com/mega65/mega65-weeip. The

code that controls the ethernet controller is located in eth.c.

116

https://github.com/mega65/mega65-weeip

CHAPTER

451027 Multi-Function 1/O
Controller

Overview
FO11-compatible Floppy Controller

SD card Controller and FO11 Virtuali-

sation Functions
Touch Panel Interface
Audio Support Functions

Miscellaneous 1/O Functions

118

OVERVIEW

The 451027 is a multi-purpose 1/O controller that incorporates the functions of the
Cé5's FO11 floppy controller, together with the MEGA&5's SD card controller inter-
face, and a number of other miscellaneous 1/O functions.

Each of these major functions is covered in a separate section of this chapter.

FO11-COMPATIBLE FLOPPY
CONTROLLER

The MEGAGS5 computer is one of the very few modern computers that still includes
first-class support for magnetic floppy drives. It includes a floppy controller that is
backwards compatible with the C65's FO 11D floppy drive controller.

However, unlike the FO 11D, the MEGAG5's floppy disk controller supports HD and ED
media, and similar to the 1541 floppy drive, it also supports variable data rates, so
that a determined user could develop disk formats that store more data, include robust
copy protection schemes, or both.

Other disk formats, such as the GCR scheme used by the 1541 and 1571, or the
track-at-once MFM scheme used by the Amiga™ family of computers can also be
used, with varying amounts of effort. This is possible via the track DMA functionality
that is jointly provided by the 451027 and the 45GS02 processor. These two devices
work together to allow reading or writing raw flux signals from and to diskettes, thus
allowing the reading or reproduction of practically any disk format.

Also, for Amiga™ diskettes, there is experimental special circuitry in the 451027 to
ease the reading of these diskettes. Specifically, the 451027 is able to detect the
unique sector sync signals used on Amiga™ diskettes, and read the data sectors. How-
ever, it does not retrieve the 16 bytes per sector of operating-system specific data,
nor does it perform the de-interleaving of the separated vectors of odd and even bits
from the order that the Amiga™ computer writes them to disk. Use of this special cir-
cuitry is optional. That is, the track DMA functionality can also be used to read Amiga™
diskettes.

Multiple Drive Support

Like the C65’s FO11 floppy drive controller, the 451027 supports up to 8 drives. The
first two of those drives, drive 0 and drive 1, are assumed to be connected to a stan-
dard 34-pin floppy cable, the same as used in standard PCs, i.e., with a twist in the
cable to allow the use of two unjumpered drives.

As is described in later sections, it is possible to switch drive 0 and drive 1's position,
without having to change cabling. Similarly, either or both of the first two drives may

119

reference a real floppy drive, a D81 disk image stored on an attached SD card, or
redirected to the floppy drive virtualisation service, so that the sector accesses can
be handled by a connected computer, e.g., as part of a comfortable and efficient
cross-development environment.

The remaining six drives are supported only in conjunction with a future C1565-
compatible external drive port.

Buffered Sector Operations

The 45l027 support two main modes of reading sectors from a disk: byte-by-byte,
and via a memory-mapped sector buffer.

The byte-by-byte mechanism consists of having a loop wait for the DRQ signal to be
asserted, and then reading the byte of data from the DATA register (3D087).

The memory-mapped sector buffer method consists of waiting for the BUSY flag to
clear, indicating that the entire sector has been read, and then directly accessing
the sector buffer located at $FFD6CO0 - $FFDSDFF. Care should be taken to ensure
that the BUFSEL signal (bit 7 of $D&89) is cleared, so that the floppy sector buffer is
visible, rather than the SD card sector buffer for programs other than the Hypervisor.
This is because only the Hypervisor has access to the full 4KB SD controller buffer
space: Normal programs see either the floppy sector buffer or the SD card sector
buffer repeated 8 times between $FFDS000 and $FFDSFFF.

Alternatively, the sector buffer can be mapped at $DE0O - $DFFF, i.e., in the 4KB I/O
areaq, by writing the $8 1 to the SD command register at $D&80. This will hide any I/O
peripherals that are otherwise using this area, e.g., from cartridges, or REU emulation.
This function can be disabled again by writing $82 to the SD command register. As
with the normal sector buffer memory mapping at $FFD6éxxx, the BUFSEL signal (bit 7
of $D689) affects whether the FDC or the SD card sector buffer is visible, for software
not running in Hypervisor mode. Note that if you use the Matrix Mode / serial monitor
interface to inspect the contents of the sector buffer, that this occurs in the Hypervisor
context, and so the BUFSEL signal will be ignored, and the full 4KB buffer will be visible.

The memory-mapped sector buffer has the advantage that it can be accessed via
DMA, allowing for very efficient copies. Also, it allows for loading a sector to occur
in the background, while your program gets on with more interesting things in the
meantime.

Reading Sectors from a Disk

There are several steps that you must follow in order to successfully read a sector from
a disk. If you follow these instructions, your code will work with both physical disks, as
well as D81 disk images that exist on the SD card:

« First, enable the motor and select the appropriate drive. The FO11 supports
upto 8 physical drives, although it is rare for more than two to be physically
connected. To enable the motor, write $60 to $D080. You should then write a

120

SPINUP command ($20) to $D08 1, and wait for the BUSY flag (bit 7 of $D082)
to clear. The drive is now spinning at speed, and ready to service requests.

+ Next, select the correct side of the disk by either setting or clearing the SIDE1
flag (bit 3 of $D080). This takes effect immediately.

+ Third, use the step-in and step-out commands (writing $10 and $18 to $D081)
as required to move the head to the correct track. Again, after each command,
you should wait for the BUSY flag (bit 7 of $D082) to clear, before issuing the
next command.

Note that you can check if the head is at track 0 by checking the TRACKO flag,
but there is no fool-proof way to know if you are on any other specific track. You
can use the registers at $D6A3 - $DSAS to see the track, sector and side value
from the last sector header which passed under the head to make an informed
guess as to which track is currently selected. Note that this only works for real
disks, as disk images do not spin under the read head. Also note that it is possible
for tracks to contain sectors which purposely or accidently have incorrect track
numbers in the sector headers.

* Fourth, you need to load the desired track, sector and side number into the
TRACK, SECTOR and SIDE registers (30084, $D085 and $D086, respectively).
The FDC is now primed ready to read a sector.

+ Fifth, you should write an appropriate read command value into $D08 1. This will
normally be $40 (64). You then wait for the RDREQ signal ($D083, bit 7) to go
high, to indicate that the sector has been found. You then either wait for each
occassion when DRQ goes high, and read byte-by-byte in such a loop, or wait
for the BUSY flag to clear and the DRQ and EQ flags to go high, which indicates
that the complete sector has been read into the buffer.

Track Auto-Tune Function

The 451027 also includes a track “auto-tune” function, which is enabled by clearing
bit 7 of $D696. That function reads the sector headers to determine which track the
head is currently over, and steps the head in or out to try to get to the correct track.
Auto-tune is enabled by default.

Sector Skew and Target Any Mode

It is also worth noting that the TARGANY signal can be asserted to tell the floppy
controller to simply read the next sector that passes under the head. This applies only
when using real floppy disks, where it offers the considerable advantage of letting you
read the sectors in the order in which they exist on the disk. This allows you to read a
track at once, without having to wait for the index hole to pass by, or having to know
which sector will next pass under the head.

For example, the C65 DOS formats disks using a skew factor of 7, while PCs may
use a different skew-factor. If you don't know the skew factor of the disk, you may

121

schedule the reading of the sectors on the track in a sub-optimal order. This can result
in transfer rates as low as 5 sectors per second, compared with the optimal case of
50 sectors per second. Thus with either correct sector order, or using the target any
mode, it is possible to read approximately two full tracks per second, i.e., two sides
X two tracks, or approximately 20KB/second on DD disks, or double that on HD disks,
at around 40KB/second. This compares very favourably with the C65 DOS loading
speed, which is typically nearer 1KB/sec in Cé4-mode.

Disk Layout and 1581 Logical Sectors

The 1581 disk format is unusual in that the physical sectors on the disk are a different
size of the size of the data blocks that it presents to the user. Specifically, the disks
use 512 byte sectors, while the 1581 (and C45) DOS present 256 byte data blocks.
Two blocks are stored in each physical sector. Also, the physical track numbers are
from 0 to 79, while the logical track numbers of the DOS are 1 to 80. Physical sectors
are also numbered from 1 to 10, while logical block numbers begin are 0 to 39.

This means that if you want to find a 1581 logical sector, you need to know which
physical sector it will be found in. To determine the physical sector that contains a
block, you first subtract one from the track number, and then divide the sector number
by two. Logical sectors 0 to 19 of each track are located in physical sectors 1 to 10
on the first side of the disk. Logical sectors 20 to 39 are located in physical sectors 1
to 10 on the reverse side of the disk.

Thus we can map a some logical track and sector ¢,s to the physical track, side and
sector as follows:

track =t —1
sector = (s/2) + 1,IFFs < 20, ELSE = ((s — 20)/2) + 1
side = 0I F F'sector < 20

It is also worth noting that the 451027 is capable of reading from tracks beyond track
80, provided that the disk drive is capable of this. Almost all 3.5 inch floppy drives
are capable of reading at least one extra track, as historically manufacturers of floppy
disks stored information about the disk on the 8 1st track. In our experience almost all
drives will also be able to access an 82nd track.

FD2000 Disks

The CMD™ FD2000™ high-density 3.5" disk drives for Commodore™ computers use
an unusual disk layout that is quite different from PCs: They use 10 sectors, the same
as on 720KB double-density (DD) disks, but double the sector size from 512 bytes to
1,024 bytes. The 451027 does not currently support these larger sectors for buffered
sector operation. At least read-only support is planned to be added via a core update
in the future. However, FD2000™ and FD4000™ diskettes can be read and written
using the track DMA functionality.

122

Also, for creating new diskettes, the 451027 does already support high-density disks
and drives, with much higher capacities than the FD2000 was able to support.

High-Density and Variable-Density Disks

The 451027 supports variable data rates, allowing the use of HD drives and media,
with a flexible approach to disk formats to support user experimentation, and the easy
manipulation of high-capacity software distribution formats.

You are really only limited by your imagination, available time, and the limited number
of people who are still interested in inserting a floppy disk into their computer!

The standard high-density (HD) disk format is “1.44MB”, using 18 sectors per track
over 80 tracks. This results in 80 tracks x 18 sectors x 2 sides = 2,880 sectors. As
each sectoris 512 bytes, this corresponds to 1,440KB. This leads us into the interesting
wonderland of “floppy disk marketing megabytes,” a phenomena which long predates
SD card and hard drive manufacturers using 1,000,000 byte megabytes.

Curiously for floppy disks, the 1,024,000 byte “megabyte” was used, i.e., “1MB" = 1KB
x 1KB, that is a strange hybrid of binary and decimal conventions. Perhaps it was be-
cause the previous standard was 720KB, and they thought people would think it odd if
double 720KB was 1.41MB, and complain about the missing kilo-bytes. We will con-
tinue to use the 1,024KB = 1,000KB floppy disk marketing mega-byte for consistency
with this historical inconsistency.

However, HD floppy disks are fundamentally capable of holding much more than
1.44MB. For example, the FD2000 stored 1.6MB by using double-sized sectors to
squeeze the equivalent of 20 sectors per track, and the Amiga went further by using
track-at-once writing to fit 22 sectors per track. Both these formats used a constant
data rate over all tracks, and thus a constant number of sectors per track.

However, the circumference of the tracks on a 3.5" floppy disk vary quite a lot: The
inner track has a diameter of around 2.5cm, while the outside track is 1.6 longer.
The 1.44MB disk format is designed so that the data is reliably stored on those shorter
inner tracks. This means that we should be able to fit 160% more data on the outer-
most track compared with the inner-most track, subject to a number of terms and
conditions imposed by The Laws of Physics, the design of floppy drive electronics,
the quality of media being used and various other annoying things. Because of this
variability and uncertainty, the MEGAS5's floppy controller supports fully variable data
rate on a track-by-track basis.

Track Information Blocks

To support variable data rates, the 45GS27 supports the use of Track Information
Blocks (TIBs) that contain information on the data rate and encoding used on the track.
This allows users to experiment with various densities on various tracks, and yet have
the disks function automatically for buffered sector operations.

123

The Track Information Block is automatically created when using the automatic track
format function, but must be manually created if using unbuffered formatting. The TIB
itself consists of the following data:

1. 3x $A1 Sync bytes (written with clock byte $FB)

2. $65 MEGAGS5 Track Information Block marker (written with clock byte $FF, as are
all following bytes in the block)

3. The track number

4. The data rate divisor, in the same format as $D6A2, i.e., data rate = 40.5MHz /
value.

5. Track encoding information: Bit 7 = Track-at-once flag, 1 = no inter-sector gaps
(Amiga style), O = with inter-sector gaps (normal), Bit 6 = data encoding, 0 =
MFM, 1=RLL2,7. Other bits are reserved, and should be 0 when written.

6. Sector count, i.e., number of sectors on the track.
7. CRC byte 1, using the normal floppy disk CRC algorithm.
8. CRC byte 2, using the normal floppy disk CRC algorithm.

The Track Information Block is always written a the data rate for a 720KB Double-
Density disk, so that they can be present on any disk. Writing the Track Information
Block and start-of-track gaps at the DD data rate also ensures that at very high data
rates, the head still has sufficient time to switch to write mode, thus avoiding one of
the many problems that arise when writing data at very high data rates.

If formatting disks unbuffered, it is the programmer’s responsibility to switch the data
rate after having written the Track Information Block, and several more bytes to allow
the floppy encoding pipeline to flush out the last byte of the Track Information Block.
This is all automatically managed if using the automatic track formatting function.

The inclusion of the TIB allows users to play and explore the possibilities of different
data rates on different drives and media, while still being automatically readable in
all MEGA65s, because the TIB allows the controller to switch to the correct data rate
and encoding. It is likely that over time somewhat standardised formats will develop,
quite likely in the range of 2MB to 3.5MB - thus approaching the capacity of ED media
in ED drives, without the need for those drives or media.

Formatting Disks

Formatting disks is now possible with the 451027, either unbuffered or fully-automatic.
To format a track issue one of the following commands to $D08 1:

* $A0 - Automatic format, with inter-sector gaps, and write pre-compensation

disabled.

* $A1 - Manual format, write-precompensation disabled.

124

* $A4 - Automatic format, with inter-sector gaps, and write pre-compensation
enable.

+ $AS5 - Manual format, write-precompensation enabled.

+ $A8 - Automatic format, Amiga-style track-at-once, and write pre-
compensation disabled.

« $AC - Automatic format, Amiga-style track-at-once, and write pre-
compensation enable.

Manual formatting is not recommended, unless mastering track-at-once formatted
disks for software distribution, because of the relative complexity of doing so. Also,
at the higher data rates, bytes have to be delivered to the floppy controller as often
as every 20 cycles, which requires considerable care when writing the format routine.
For more information on manual formatting tracks, refer to the C64 Specifications
Manual or the C65 ROM DOS source code, for examples of manual formatting.

The automatic modes, in contrast, format a track with a single command, and are thus
much easier to use, and are recommended for general use. Write pre-compensation
should normally be enabled, as it is required at higher data rates, and does not cause
problems at lower data rates.

Write Pre-Compensation

Write pre-compensation is a family of algorithms used when writing high data-rate
signals to floppy disks. It is used to anticipate and cancel out the predictable com-
ponent of timing variation of magnetic recording. There are a variety of sources of
this timing variation, which have been the subject of PhD theses, and a lot of propri-
etary research by hard drive manufacturers. What is important for us to understand
is that adjacent pulses (really magnetic inversions) get pushed together, if they are
surrounded by longer pulses, or tend to spread apart if surrounded by shorter pulses.

There are also other fascinatingly complex and difficult to predict factors, that cause
things such as the “negative shift of mid-length pulses”, “inverse F-distribution of pulse
arrival times” and goodness knows what else. But we shall leave those to the hard
drive manufacturers. We limit ourselves to the data pattern induced effect described
in the previous paragraph.

The 45GS27 supports two tunable coefficients for small and large corrections to this,
which are used with an internal look-up table. However, this is all automatically han-
dled if you enable write pre-compensation. This allows data rates that much more
closely approach the expected limit of HD media, although due to the other horrors of
magnetic media recording alluded to above, the actual limit is not reached.

Buffered Sector Writing

The 451027 can write to disk images that are located on the SD card, or when using
virtualised disk access.

125

To write a sector, you follow a similar process to reading, except that you write $84 to
the command byte instead of $40. The $80 indicates a write, and the $04 activates
write-precompensation. This is important when writing to real floppy disks, especially
HD and ED disks. Write-precompensation causes bits to be written slightly early or
slightly late, using an algorithm that models how the magnetic domains on a disk tend
to move after being written.

If you do not wish to use the sector buffer, but instead provide each byte one at a
time during the write operation, you must add $01 to the command code. However,
this is not recommended on the MEGASS5, because when writing to the SD card or
using virtualised disk images the entire sector operation can happen instantaneously
from the perspective of your program. This means that it is not possible to supply data
reliably when in this mode. Thus apart from being less convenient, it is also less reliable.

Once a write operation has been triggered, the DRQ signal indicates when you should
provide the next byte if performing a byte-by-byte write. Otherwise, it is assumed
that you will have pre-filled the sector buffer with the complete 512 bytes of data
required.

To write to disks that contain Track Information Blocks, you should first wait for the TIB
to be read when changing tracks. This is done by waiting for $D6A9 (sectors per track
from the TIB) to contain a non-zero value.

Floppy Track DMA

As previously described, the 451027 connects to the 45GS02 CPU, and specifically
its internal DMA controller, to provide a simple mechanism for reading and writing the
raw magnetic flux transitions of floppy disks. In addition to allowing writing softwar
that can read any possible disk format, it also allows for the writing and duplication
of almost any disk format. | say almost, because it is possible for diskettes to be
written using special machines that have capabilities that exceed that of the floppy
drive mechanism of the MEGAS5. Fat tracks is one example of this. Another example
is where the magnetic flux transitions are placed and/or spaced in a manner that
prevents a normal floppy drive from reproducing them exactly.

Using Floppy Track DMA

The following DMA options tell the DMAgic controller to read or write raw floppy flux
values instead of memory location. In this mode, the DMAgic controller waits for each
successive pulse interval to be received from the 451027. Thus the data that it reads
(or writes) is the duration between each successive flux inversion, in units of 50ns.

« $0D - Write raw flux intervals. Set DMA to COPY mode to use this.

+ $0E - Read raw flux intervals, ignoring implausibly long intervals. Set DMA mode
to FILL to use this.

« $OF - Read raw flux intervals, returning implausibly long intervals as $FF. Set
DMA mode to FILL to use this.

126

See floppytest.c in the megad 5-tools repository of the MEGASS5 github site at https:
//github.com/mega65-tools for example code that reads tracks using this function-
ality.

Understanding the Limitations of Floppy Drives

When writing raw flux transitions, care must be taken to understand the limitations of
standard floppy drives. There are three key factors to be considered:

+ No two transitions can be placed too close togther. The drive will simply refuse to
write them if they are below some distance apart. Also, even if you do manage
to write them, the read filtering circuitry of the floppy drive will merge pulses
that are too close together.

+ No two transitions can be placed too far apart. In this case, the drive will happily
write them, but the read filter circuitry will start getting worried if it doesn’t see a
pulse for a while, and will start thinking that the background noise is real signals,
and introduce false pulses into the read stream that are not really there on the

disk.

+ Magnetic pulses move on the disk when you write them! The physics behind this is
really complex, and depends on the sequence of distances between successive
pulses, the data that was previously written to the track, and, it feels like, also
the phase of the moon and colour of your underpants. There are some general
rules of thumb that can be used at “typical” pulse distance intervals to partially
mitigate this. These rules are called Write Pre-compensation, where the pulses
are moved before writing, so that after writing they end up in the right place.
The 451027 already implements write pre-compensation for HD formatted disks.
The effects of moving pulses is especially pronounced for pulses that are closer
together.

* The higher numbered tracks are shorter. This means that the pulses have to be
further apart in time, to be the same distance apart on a track. This is why the
1541 fits less data on higher numbered tracks. This is especially pronounced at
higher data rates, where the “magnetic resolution” of the disks becomes anissue.
To make matters worse, the strength of the magnetic signals is proportional to
the speed of the track going past. This means for the higher numbered tracks
that are nearer the middle of the disk, not only is the “magnetic resolution” lower
due to the shorter tracks, the linear velocity of the disk under the head is also
lower, resulting in weaker signals.

It is the combination of these factors that will tend to limit how densly you can pack
data onto a floppy disk - together of course with the quality and condition of the
diskette and disk drive. The MEGA&5's HD+ disk formats that are able to fit around
3MiB on a standard 1.44MiB diskette take special care to manage these factors. This
is why those formats use many different density zones, as well as using RLL27 encoding
instead of MFM encoding, because it increases the minimum distance between pulses.

127

https://github.com/mega65-tools
https://github.com/mega65-tools

FO11 Floppy Controller Registers

The following are the set of FO11 compatibility registers of the 451047. Note that
registers related to the use of SD card based storage are found in the corresponding
section below.

HEX DEC DB7 DBé DBS DB4 DB3 DB2 | DB1 | DBO
D080 53376 IRQ LED MOTOR | SWAP SIDE DS

D081 53377 | WRCMD | RDCMD | FREE STEP DIR ALGO ALT NOBUF
D082 53378 BUSY DRQ EQ RNF CRC LOST PROT TKO
D083 | 53379 | RDREQ | WTREQ RUN WGATE | DISKIN INDEX IRQ DSKCHG
D084 | 53380 TRACK

D085 | 53381 SECTOR

D086 | 53382 SIDE

D087 53383 DATA

D088 | 53384 CLOCK

D089 | 53385 STEP

DO8A | 53386 PCODE

ALGO Selects reading and writing algorithm (currently ignored).
ALT Selects alternate DPLL read recovery method (not implemented)
BUSY FO 11 FDC busy flag (command is being executed) (read only)

CLOCK Set or read the clock pattern to be used when writing address and data
marks. Should normally be left $FF

COMMAND FO 11 FDC command register
CRC FO 11 FDC CRC check failure flag (read only)

DATA FO 11 FDC data register (read/write) for accessing the floppy controller’s
512 byte sector buffer

DIR Sets the stepping direction (inward vs
DISKIN FO 11 Disk sense (read only)
DRQ FO 11 FDC DRQ flag (one or more bytes of data are ready) (read only)

DS Drive select (0 to 7). Internal drive is 0. Second floppy drive on internal cable
is 1. Other values reserved for C1565 external drive interface.

DSKCHG FO 11 disk change sense (read only)

EQF011 FDC CPU and disk pointers to sector buffer are equal, indicating that
the sector buffer is either full or empty. (read only)

FREE Command is a free-format (low level) operation

INDEX FO 11 Index hole sense (read only)

128

IRQ The floppy controller has generated an interrupt (read only). Note that in-
terrupts are not currently implemented on the 45GS27.

LED Drive LED blinks when set

LOST FO 11 LOST flag (data was lost during transfer, i.e., CPU did not read data
fast enough) (read only)

MOTOR Activates drive motor and LED (unless LED signal is also set, causing the
drive LED to blink)

NOBUF Reset the sector buffer read/write pointers

PCODE (Read only) returns the protection code of the most recently read sector.
Was intended for rudimentary copy protection. Not implemented.

PROT FO 11 Disk write protect flag (read only)
RDCMD Command is a read operation if set

RDREQ FO 11 Read Request flag, i.e., the requested sector was found during a
read operation (read only)

RNF FO 11 FDC Request Not Found (RNF), i.e., a sector read or write operation
did not find the requested sector (read only)

RUN FO 11 Successive match. A synonym of RDREQ on the 451047 (read only)
SECTOR FO 11 FDC sector selection register

SIDE Directly controls the SIDE signal to the floppy drive, i.e., selecting which
side of the media is active.

STEP Writing 1 causes the head to step in the indicated direction

SWAP Swap upper and lower halves of data buffer (i.e. invert bit 8 of the sector
buffer)

TKO FO 11 Head is over track 0 flag (read only)
TRACK FO 11 FDC track selection register

WGATE FO 11 write gate flag. Indicates that the drive is currently writing to
media. Bad things may happen if a write transaction is aborted (read only)

WRCMD Command is a write operation if set

WTREQ FO 11 Write Request flag, i.e., the requested sector was found during a
write operation (read only)

The following registers apply to the 451027 only, i.e., are MEGAG5 specific:

HEX DEC DB7 DBé6 DB5 DB4 DB3 DB2 DB1 DBO

DBGMO- | DBGMO- DBGW- | DBGW- | DBGW-

DSAO 54944 | DENSITY TORA TORA DBGDIR | DBGDIR DATA GATE GATE
continued ...

129

..continued
HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO
D6A2 54946 DATARATE

+ DATARATE Set number of bus cycles per floppy magnetic interval (decrease to
increase data rate)

+ DBGDIR Control floppy drive STEPDIR line

« DBGMOTORA Control floppy drive MOTOR line
+ DBGWDATA Control floppy drive WDATA line

+ DBGWGATE Control floppy drive WGATE line

+ DENSITY Control floppy drive density select line

SD CARD CONTROLLER AND FO11
VIRTUALISATION FUNCTIONS

For those situations where you do not wish to use real floppy disks, the 451027 supports
two complementary alternative modes:

+ SD card Based Disk Image Access.
+ Virtualised Disk Image Access.

This is in addition to providing direct access to a dual-bus SD card interface.

SD card Based Disk Image Access

The 45l027 is both a floppy drive and SD card controller. This enables it to trans-
parently allow access to D81 disk images stored on the SD card. Further, because
the controller is combined, it is possible to still have the floppy drive step and spin as
though it were being used, providing considerable atmosphere and sense of realism,
even when using disk images.

The 451027 supports both 800KB standard D81 disk images, as well as 64MB “MEGA
Images”. While an operating system may impose restrictions based on the name of
a file, the 451027 is blind to these requirements. Instead, it requires only that a
contiguous 800KB or 64MB of the SD card is used to contain a disk image.

When a disk image is enabled, the corresponding set of sectors on the SD card are
effectively placed under user control, and the operating system is no longer able to
prevent the reading or writing of any of those sectors. Thus you should never enable
access to an image that is shorter than the required size, as it will otherwise allow the
user to unwittingly or maliciously access and/or modify data that is not part of the
image file.

130

For the same reason, only the hypervisor can change the sector number where a disk
image starts (the DTSTARTSEC? signals), or allow the use of disk images instead of the
real floppy drive (USEREALO and USEREAL1 signals). Once the Hypervisor has set the
start sector of a disk image, and cleared the USEREALO or USEREALT signal, the user
can still controll whether an access will go to the real floppy drive or to the disk image
by respectively clearing or setting the appropriate signal. For drive O, this is DOIMG,
and for drive 1, it is D1IMG.

There are also signals to control whether a disk image is an 800KB D81 image or a
64MB MEGA Disk image, and whether a disk image is present, and whether it is write
protected. These are all located in the $D&8B register. Because of the ability of
manipulation of these registers to corrupt or improperly access data, these signals are
all read-only, except from within the hypervisor.

The following table lists the registers that are used to control access to disk images
resident on the SD card:

HEX | DEC [DB7 | DBé | DB5 | DB4 | DB3 | DB2 | DB1 [DBO
D68A [54922 | DID64 [DOD64 -

D68B | 54923 | DIMD | DOMD | DIWP [DIP [DIIMG | DOWP | DOP | DOIMG
D68C | 54924 DOSTARTSECO

D68D | 54925 DOSTARTSEC |

D68E | 54926 DOSTARTSEC?2

D68F | 54927 DOSTARTSEC3

D690 | 54928 D 1STARTSECO

D691 | 54929 D1STARTSEC

D692 | 54930 D 1STARTSEC2

D693 | 54931 D1STARTSEC3

D6AT | 54945 - SILENT | 2557 |TARGANY| o0

« DOD64 FO 11 drive 0 disk image is D64 mega image if set (otherwise 800KiB
1581 or D65 image)

+ DOIMG FO 11 drive O use disk image if set, otherwise use real floppy drive.

+ DOMD FO 11 drive 0 disk image is D65 image if set (otherwise 800KiB 1581
image)

« DOP FO 11 drive 0 media present

« DOSTARTSECO FO 11 drive O disk image address on SD card (LSB)

+ DOSTARTSEC1 FO 11 drive O disk image address on SD card (2nd byte)
+ DOSTARTSEC2 FO 11 drive 0 disk image address on SD card (3rd byte)
« DOSTARTSEC3 FO 11 drive O disk image address on SD card (MSB)

« DOWP Write enable FO11 drive O

131

+ D1D64 FO11 drive 1 disk image is D64 image if set (otherwise 800KiB 1581 or
Dé5 image)

« D1IMG FO 11 drive 1 use disk image if set, otherwise use real floppy drive.

+ DIMD FO11 drive 1 disk image is D65 image if set (otherwise 800KiB 1581
image)

« DIPFO11 drive 1 media present

« D1ISTARTSECO FO 11 drive 1 disk image address on SD card (LSB)

+ DISTARTSEC1 FO11 drive 1 disk image address on SD card (2nd byte)
+ DISTARTSEC2 FO 11 drive 1 disk image address on SD card (3rd byte)
« DISTARTSEC3 FO 11 drive 1 disk image address on SD card (MSB)

+ D1WP Write enable FO 11 drive 1

+ SILENT Disable floppy spinning and tracking for SD card operations.

« TARGANY Read next sector under head if set, ignoring the requested side, track
and sector number.

+ USEREALO Use real floppy drive for drive 0 if set (read-only, except for from
hypervisor)

+ USEREAL1 Use real floppy drive for drive 1 if set (read-only, except for from
hypervisor)

FO11 Virtualisation

In addition to allowing automatic read and write access to SD card based D8 1 images,
it is possible to connect a program to the serial monitor interface that provides and
accepts data as though it were the floppy disk.

This is commonly used in a cross-development environment, where you wish to fre-
quently modify a disk image that is used by a program you are developing - without
the need to continually push new versions of the disk image on the MEGA65's SD card
first. It also has the added benefit that it allows you to easily visualise which sec-
tors are being read from and written to, which can help speed up development and
debugging of your program.

This function operates together with the MEGAS5's Hypervisor by triggering hyperrupts
(that is, interrupts that activate the Hypervisor). There is then special code in the
Hypervisor that communicates with the m65 program via the serial monitor interface.

If that all sounds rather complex, all you need to know is that to use this function,
you run the m65 utility with arguments like -d image.d81. This should automatically
establish the link with the MEGAGS5. If the BASIC interprettor stops responding, press
the reset button (not the power switch) on the left-hand side of your MEGA6S5, and
it should return to the BASIC's READY. prompt - and if your supplied disk image has a
Cé5 auto-boot function, then it should automatically start booting.

132

This function works very well if the host computer runs Linux, and will allow loading at
a speed of around 60KB per second. However, it may be much slower on Windows or
Apple OSX-based systems.

Of course to use this, you will also need an interface module and/or cable to connect
your cross-development system to the MEGAS5's serial monitor interface. This is most
easily done using a Trenz TE0790-03 JTAG adapter and mini-USB cable.

More information on using this interface and the m65 tool can be found in the MEGAS5
Book, Data Transfer and Debugging Tools (chapter 16).

Dual-Bus SD card Controller

The 451027 contains a high-speed dual-bus SD card controller. This controller oper-
ates in SPI x1 mode at a clock speed of 20MHz, providing a maximum throughput of
approximately 2MB/sec. The quality of the SD card makes a signficant difference to
performance, with some cards routinely delivering 1.7MB/sec, while others TMB/sec
or less. Generally speaking, newer cards marketted as being suitable for video record-
ing perform better. The controller supports SDHC cards, and has experimental support
for SDXC cards. Legacy SD cards with a capacity of 2GB or less are not supported,
as these use a different addressing mode.

The SD controller itself is very simple to drive: Supply the sector number in $D86 1-
$D684, and then issue a read or write command to the command register ($D680).
The SD controller supports only sector-based buffered operations, using the sector
buffer. In hypervisor mode, the sector buffer is located at $FFDSE0O - $FFDSFFF,
while when the computer is in normal operating mode, the SD card and the floppy
controller share a single address for both the floppy drive and SD card sector buffers.
Which buffer is visible at that address is dictated by the BUFSEL signal. If it is T, then
the SD card buffer is visible, while if it is 0, then the floppy drive sector buffer is visible.
See also Sub-section 8 on page 120 for further discussion on the precise behaviour
of this buffer with regard to normal mode versus Hypervisor mode, and how it can also
be mapped at $DE0O.

Write Gate

When writing a sector, you must, however, first open the “write gate”. This is a mech-
anism to prevent accidental corruption of data on the SD card, as it requires two
different values to be written to the command register ($D680) in quick succession:
You have approximately 1 milli second after opening the write gate to command the
write, before the write gate effectively closes again, write-protecting the SD card until
the write gate is opened again. There are two different write gates: One for the mas-
ter boot record (sector 0), and the other for all other sectors, both of which are listed
in the command table below. This is designed to provide additional protection to the
very important master boot record sector against programs accidentally calculating
sector O as the target for an ordinary write.

133

Fill Mode

Where you wish to fill sectors with a constant value, the 451027 supports a mode for
this, so that you do not need to overwrite the contents of the sector buffer. This is
activated by placing the desired fill value into the FILLVAL register ($D686), and then
issuing the enable fill mode command ($83), performing the sector write operations,
and then issuing the disable fill mode command ($84).

Selecting Among Multiple SD cards

The controller supports two SD card interfaces, and it is possible to have a card in both
at the same time. However, each card needs to be reset and commanded separately.
Only one card can be commanded at a time. That said, it is possible to reset each
card once, and then switch between the cards to perform individual operations.

To select the first SD card slot, write $CO to the SD Controller Command Register
($D680). To select the second SD card slot, write $C 1 instead.
SD Controller Command Table

The SD controller supports the following commands that can be written to the com-
mand register at $D680:

Command Function
$00 (0) Place SD card under reset (deprecated. Use
command $10 instead)
$01 (1) Release SD card from reset
$02 (2) Read a sector from the SD card
$03 (3) Write a single sector to the SD card
Write the first sector of a multi-sector write to the SD
$04 (4) card
$05 (5) Write a subsequent sector of a multi-sector write to
the SD card
$06 (6) \éV[;i’re TZe final sector of a multi-sector write to the
car
$0C (12) Request flush of SD card write buffers (experimental)
$OE (14) Pull SD handshake line Tow (debug only)
$OF (15) Pull SD handshake line high (debug only)
$10 Place SD card under reset with flags set (preferred
(16)
method)
$11(17) Release SD card from reset (alternate method)
$40 Clear the SDHC/SDXC flag, selecting legacy SD
(64)
card mode (deprecated)
$41 (65) Set the SDHC/SDXC mode flag
$44 (68) 52: force clearing of SD card state machine error
continued ...

134

..continued

Command Function

$45 (69) Ezgin force clearing of SD card state machine error

$4D (77) Open write-gate to sector 0 (master boot record) for
approximately 1 milli-second

$57 (87) Open write-gate for all sectors > 0 for approximately
1 milli-second

$81(129) Enable mapping of the SD/FDC sector buffer at
$DEOO - $DFFF

$82 (130 Disable mapping of the SD/FDC sector buffer at

$DEOO - $DFFF

(130)
$83 (131) Enable SD card Fill Mode
$84 (132) Disable SD card Fill Mode
(192)
(193)

$CO (192 Select SD card Slot 0
$C1 (193 Select SD card Slot 1

Note that the hypervisor can enable or disable direct access to the SD controller. The
hypervisor operating system may provide a mechanism for requesting permission to
access the SD card controller, e.g., for disk management utilities.

The SD card controller registers are as follows:

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DBI | DBO

D680 54912 CMDANDSTAT
D681 54913 SECTORO
D682 | 54914 SECTOR]1
D683 | 54915 SECTOR2
D684 | 54916 SECTOR3
D686 | 54918 FILLVAL
D68A | 54922 - VFDC1 | VFDCO VICIHII | CDCO00
FDC- FDC- AUTO-
D6AE 54958 [FDCTIBEN OXSEL | VARSPD | 2XSEL FDCENC
VW-
D6AF | 54959 - VLOST | VDRQ VRNF | VEQINH FOUND 'VRFOUND

AUTO2XSEL Automatically select DD or HD decoder for last sector display
CDCOO (read only) Set if colour RAM at $DCO00

« CMDANDSTAT SD controller status/command

FDC2XSEL Select HD decoder for last sector display

FDCENC Select floppy encoding (0=MFM, 1=RLL2,7, F=Raw encoding)
FDCTIBEN Enable use of Track Info Block settings

135

FDCVARSPD Enable automatic variable speed selection for floppy controller us-
ing Track Information Blocks on MEGAS5 HD floppies

FILLVAL WRITE ONLY set fill byte for use in fill mode, instead of SD buffer data
« SECTORO SD controller SD sector address (LSB)

« SECTORT1 SD controller SD sector address (2nd byte)

+ SECTOR2 SD controller SD sector address (3rd byte)

« SECTORS3 SD controller SD sector address (MSB)

+ VDRQ Manually set f011_drq signal (indented for virtual FO 11 mode only)

« VEQINH Manually set f011_eq_inhibit signal (indented for virtual FO11 mode
only)

* VFDCO (read only) Set if drive O is virtualised (sectors delivered via serial monitor
interface)

* VFDC1 (read only) Set if drive 1 is virtualised (sectors delivered via serial monitor
interface)

* VICIII (read only) Set if VIC-IV or ethernet IO bank visible
+ VLOST Manually set f011_lost signal (indented for virtual FOT1 mode only)

+ VRFOUND Manually set f011_rsector_found signal (indented for virtual FO11
mode only)

* VRNF Manually set f011_rnf signal (indented for virtual FO 11 mode only)

« VWFOUND Manually set f011_wsector_found signal (indented for virtual FO11
mode only)

Some MEGAGS variants include an LCD touch panel, primarily the MEGAphone hand-
held version of the MEGAG5. The touch interface supports the detection of two simul-
taneous touch events. Some variants may also support gesture detection, however,
this is still very experimental.

The touch detection interface that is contained in the 451027 is complemented by
the on-screen-keyboard interface of the 4551 UART and GPIO controller. Refer to
section & for further information. Of particular relevance are bit 7 of the registers
$D&15 - $D617 which allow activating the on-screen keyboard interface, selecting
whether the on-screen keyboard is placed in the upper or lower portion of the screen,
and whether the primary or secondary on-screen keyboard is displayed.

Direct connections between the 4551 and the 451027 combine information about
any currently displayed on-screen keyboard and the touch interface controller, al-

136

lowing synthetic keyboard events to be automatically triggered when the on-screen
keyboard portion of the touch interface is pressed. This allows the touch interface
to be used to drive the on-screen keyboard without requiring any support from user
programs. This works even when the on-screen keyboard is moving during activation
or transitioning between the top and bottom of the screen.

As touch interfaces can require calibration, the 451027 allows for a linear transfor-
mation of both the X and Y coordinates of a touch event. Specifically, there are scale
(TCHXSCALE and TCHYSCALE) and offset registers (TCHXDELTA and TCHYDELTA) that
provide for this transformation. It is also possible to flip the touch screen coordinates
in either or both the X and Y axes. These calibration registers also affect the operation
of the on-screen keyboard.

It should also be noted that some touch interfaces do not have constant horizontal or
vertical resolution. For example, some panels have a low horizontal resolution region
in the middle of the panel, which can require some care to accommodate.

To detect the primary touch event, the TOUCH 1XLSB, TOUCH 1XMSB, TOUCH 1YLSB,
TOUCH 1YMSB registers can be read. Similar registers exist for the 2nd touch event:
TOUCH2XLSB, TOUCH2XMSB, TOUCH2YLSB, TOUCH2YMSB. Each touch event has a
signle bit flag that indicates whether the touch event is currently valid: the EV1 and
EV2 bits of the register $D6B0. There are also corresponding bit-fields that indicate
whether a given touch event has been made or released, allowing the detection of
when a finger both makes and breaks contact with the screen. The UPDN 1 and UPDN2
signals provide this information. Binary values of 01 and 10, respectively indicate if
the finger has been removed or pressed against the touch panel. Values of 00 and
11 mean that a finger is either being held or not being held against the touch panel.

The primary touch event is also fed into the lightpen input of the VIC-IV, and can be
detected using the normal light pen registers of the VIC-IV.

The registers for the touch panel interface are as follows:

HEX DEC DB7 DBé6 DB5 ‘ DB4 DB3 ‘ DB2 DB1 DBO
Dé4BO 54960 YINV XINV UPDN?2 UPDN 1 EV2 EV1
DéB1 54961 CALXSCALELSB
DéB2 54962 CALXSCALEMSB
DéB3 54963 CALYSCALELSB
DéB4 54964 CALYSCALEMSB
DéB5 54965 CALXDELTALSB
DéB7 54967 CALYDELTALSB
D6B8 54968 CALYDELTAMSB
D6B9 54969 TOUCH 1XLSB
D6BA 54970 TOUCHT1YLSB
D6BB 54971 - TOUCH1YMSB - TOUCH 1XMSB
D6BC 54972 TOUCH2XLSB
D6BD 54973 TOUCH2YLSB
continued ...

137

..continued

HEX | DEC | DB7 | DBé | DBS | DB4 | DB3 | DB2 | DB1 | DBO
D6BE | 54974 - TOUCH2YMSB - TOUCH2XMSB
D6CO | 54976 GESTUREID GESTUREDIR

CALXDELTALSB Touch pad X delta LSB
CALXSCALELSB Touch pad X scaling LSB
CALXSCALEMSB Touch pad X scaling MSB
CALYDELTALSB Touch pad Y delta LSB
CALYDELTAMSB Touch pad Y delta MSB
CALYSCALELSB Touch pad Y scaling LSB
CALYSCALEMSB Touch pad Y scaling MSB
EV1 Touch event 1 is valid

EV2 Touch event 2 is valid

GESTUREDIR Touch pad gesture directions (left,right,up,down)

GESTUREID Touch pad gesture ID

TOUCH 1XLSB Touch pad touch #1 X LSB
TOUCH 1XMSB Touch pad touch #1 X MSBs
TOUCH 1YLSB Touch pad touch #1 Y LSB
TOUCH 1YMSB Touch pad touch #1 Y MSBs
TOUCH2XLSB Touch pad touch #2 X LSB
TOUCH2XMSB Touch pad touch #2 X MSBs
TOUCH2YLSB Touch pad touch #2 Y LSB
TOUCH2YMSB Touch pad touch #2 Y MSBs
UPDN 1 Touch event 1 up/down state
UPDN2 Touch event 2 up/down state

XINV Invert horizontal axis

YINV Invert vertical axis

AUDIO SUPPORT FUNCTIONS

The 451027 provides the primary interface into the MEGA&5's full cross-bar audio
mixer. This includes the interface for reading or modifying the mixer co-efficients, as

138

well as accessing the mixer feedback registers, and setting the 16-bit digital sample
values that are two of the input channels into the audio mixer.

The audio mixer consists of 128 coefficients, each of which is 16 bits. Each audio out-
put channel, e.g., left speaker, right speaker, left headphone, right headphone, cellular
modem 1 (MEGAphone models only) and so on, are generated by taking each of the
audio input channels, multiplying them by the appropriate coefficient, and adding it
to the total output of the audio output channel.

Because each audio output channel has its own set of coefficients that are applied to
all of the audio input channels, this means that it is possible to produce totally different
audio out each audio channel: For example, it is possible to play your favourite quadro-
phonic SID music out of the headphones while rick-rolling passers by with Amiga-style
MOD audio. This is why the audio mixer is refered to as a full cross-bar mixer, be-
cause there are no restrictions on how you mix each audio output channel. In this
regard, it is very similar to a full-function audio desk, allowing different mixing levels
for different speakers.

Because the audio coefficients are 16 bits each, each one is formed using two suc-
cessive bytes of the audio co-efficient space. Changes to the audio coefficients take
effect immediately, so care should be taken when changing coefficients to avoid au-
dible clicks and pops. Also, you must allow 32 cycles to elapse before changing the
selected audio coefficient, as otherwise the change may be discarded if the audio
mixer accumulator has not had time to re-visit that coefficient.

The audio sources on the MEGA65 and MEGAphone devices are as follows:

Input Channel

ID Connection

$0 (0) Left SIDs

$1 (1) Right SIDs

$2 (2) Modem Bay T (MEGAphone only)

$3 (3) Modem Bay 2 (MEGAphone only)

$4 (4) Bluetooth™ Left

$5 (5) Bluetooth™ Right

$6 (6) Headphone Interface 1

$7 (7) Headphone Interface 2

$8 (8) Digital audio Left

$9 (9) Digital audio Right

$A(10) MEMs Microphone 0 (Nexys4 and MEGAphone only)

$B(11) MEMs Microphone T (MEGAphone only)

$C(12) MEMs Microphone 2 (MEGAphone only)

$D (13) MEMs Microphone 3 (MEGAphone only)

$E (14) Headphone jack microphone (Nexys4 and
MEGAphone only)

&F OPL-compatible FM audio (shares co-efficient with

(15) .

input 14)

139

The OPL-compatible FM audio which is on source 15 is controlled by the coefficient for
source 14. This is because the coefficient for source 15 provides the master volume

level for each output. The OPL-compatible FM audio device is not currently functional
in the MEGAGS5 core.

The audio cross-bar mixer supports the following eight output channels:

Output .
Channel ID Connection
Left Primary Speaker (digital audio on MEGA&5
$0 (0) R2/R3, physical speaker on MEGAphone, headphone

jack audio on Nexys4)
Right Primary Speaker (digital audio on MEGA65
$1(1) R2/R3, physical speaker on MEGAphone, headphone
jack audio on Nexys4)
(2) Modem Bay T audio output (MEGAphone only)
(3) Modem Bay 2 audio output (MEGAphone only)
$4 (4) Bluetooth Left Audio (MEGAphone only)
(5) Bluetooth Right Audio (MEGAphone only)
Headphone Left output (MEGAS5 R2/R3 and
$6 (6) MEGAphone only. On Nexys4 boards the primary
speaker drives the 3.5mm jack)
Headphone Right output (MEGAS5 R2/R3 and
$7 (7) MEGAphone only. On Nexys4 boards the primary
speaker drives the 3.5mm jack)

To determine the coefficient register number for a given source and output, multiply
the output number by 32 and multiply the source number by 2. This will be the register
number for the LSB of the 16-bit coefficient. The MSB will be the next register. For
example, to set the coefficient of the right SIDs to the 2nd modem bay audio output,
the coefficient would be 32 x 3+ 1 x 2 =96 + 2 = 98.

Other Audio Features

The audio sub-system supports several other features, that are currently pending fur-
ther documentation.

Mixer Feedback Registers

These registers allow the processor to access the mixed audio for a particular output
channel. This can be used to implement displays of audio waveforms, or implement
certain audio-effects, such as reverb.

140

8/16 Bit Stereo Digital Audio Registers

Registers are provided for injecting 8 or 16 bit audio samples directly into dedicated
input channels of the audio mixer, providing a simple way to play digital audio data.
This is particularly useful for procedurally generated audio data. For recorded sam-
ples, it is generally simpler and better to use the Audio DMA functionality that fully
automates the play-back of digital audio. Audio DMA is especially heplful at higher
sample rates, as it reduces the burden on the CPU, and greatly reduces sample jitter.

Pulse Width vs Pulse Density Modulation

For models of the MEGAGS5 that use a 1-bit over-sampled output for audio (upto and
including the R3/R3A model), it is possible to select between these two different over-
sampling methods. Both have similar performance, but users may prefer one over the
other. This choice has no effect on the R4 or newer models that use a dedicated
audio DAC to feed audio to the 3.5mm audio jack, and that has intrinsically better
audio quality. For owners of older models, the planned internal expansion board for
the MEGASS5 may include an improved audio output circuit, depending on the final
configuration of that board. No timeline is currently available for the availability of
this board. In the interim, use of HDMI audio output is the recommended solution, as
the audio is encoded digitally over the HDMI cable.

HEX | DEC | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO
D6F4 | 55028 MIXREGSEL

D6F5 | 55029 MIXREGDATA

D6F8 | 55032 DIGILLSB

D6F9 | 55033 DIGILMSB

D&FA | 55034 DIGIRLSB

D6FB | 55035 DIGIRMSB

D6FC | 55036 READBACKLSB

D4FD | 55037 READBACKMSB

D711 | 55057 - |PWMPDM -

DIGILEFTLSB Digital audio, left channel, LSB
DIGILEFTMSB Digital audio, left channel, MSB
DIGILLSB 16-bit digital audio out (left LSB)

+ DIGILMSB 16-bit digital audio out (left MSB)
DIGIRIGHTLSB Digital audio, left channel, LSB
DIGIRIGHTMSB Digital audio, left channel, MSB
DIGIRLSB 16-bit digital audio out (right LSB)

+ DIGIRMSB 16-bit digital audio out (right MSB)
MIXREGDATA Audio Mixer register read port

141

« MIXREGSEL Audio Mixer register select

+ PWMPDM PWM/PDM audio encoding select

« READBACKLSB audio read-back LSB (source selected by $D6F4)

« READBACKMSB audio read-back MSB (source selected by $D6F4)

MISCELLANEOUS I/O FUNCTIONS

142

CHAPTER

4541 Serial Bus Controller

Overview

Features of the 4541
Theory of Operation
Examples

Command Reference
Register Table

Serial Bus Timing

Optional Integrated Data-Logger

144

OVERVIEW

The 4541 is a Commodore™ serial peripheral bus compatible bus controller, that
greatly reduces the effort required to communicate with devices on this bus.

FEATURES OF THE 4541

Supports Enhanced Serial Protocol Variants

The 4541 supports the JiffyDOS™ extensions to this protocol, that allow data transfers
approximately 10x faster than using the original protocol. It is also expected that
a future revision of the 4541 will support Commodore’s fast serial protocol, that is
present in the 1571 and 1581 disk drives.

Interrupt Enabled Processor Offload

The 4541 performs serial communications independent of the microprocessor. To-
gether with an IRQ functionality, this allows software to continue on other tasks while
serial peripheral communications occurs, requiring only to be briefly interrupted when
the next event on the serial peripheral bus occurs.

Processor Speed Independence

A major advantage of the 4541, is that it also handles all timing requirements of
communications on this bus, allowing the bus to be driven by a processor that can run
at different speeds, without having to modify the the bus controller software.

Co-Existence through Open-Collector Logic

Because the 4541 uses open-collector logic, it can be used in parallel with existing
software-based implementations of the bus protocol, ensuring compatibility with ex-
isting software. It is installed in this configuration in the MEGAS5, allowing the legacy
software-based serial peripheral communications software that controls the serial pe-
ripheral bus to continue to be used unmodified.

THEORY OF OPERATION

The 4541 presents a quite simple interface: You issue commands, wait for a response,
and retrieve any data that the command retrieved. Some commands also require a
data byte, which is provided by a dedicated register. There is also a device info regis-
ter, that lets you see what the 4541 believes about the current status of the most re-

145

cently requested device, including whether it is present, and whether it supports either
or both of the JiffyDOS™ or Commodore™ 128 extensions to the standard protocol.

So, for example, to release the Attention line, you can simply write the appropriate
command byte value (65 = $41) to the command register at $D698, and then check
for the completion status in the status register at $D697, as shown in the following
example written in BASIC65:

18 POKE $D698, 541

20 IF ¢ PEEKCSDE3T) AND 520) = 400 GOTO 20
36 PRINT "DONE"

The 4541 implements a set of commands that map very closely to the KERNAL calls
that are used to control the IEC bus on the Cé4 and related computers. In most cases,
there is a single corresponding command for the 4541, although in a few cases, you
may need to issue two commands, as summarised in the following table:

KERNAL Call | Meaning and Equivalent 4541 Command(s)
$FF93 LSTNSA | Send LISTEN secondary address.

4541 Equivalent: Data = Binary OR of $60 and the
desired secondary address. Command $30. Then
Command $41 to release the Attention line.

$FF96 TALKSA | Sent TALK secondary address.

4541 Equivalent: Data = Binary OR of $60 and the
desired secondary address. Command $30. Then
Command $41 to release the Attention line.

$FFAS5 IECIN | Receive a byte from the serial peripheral bus.

4541 Equivalent : Command $32. Received byte is
available in the data register on completion.

$FFA8 IECOUT | Send a byte to the serial peripheral bus.

4541 Equivalent : Data = the byte to send.
Command $31 (or $30 if the byte is to be sent under
Attention).

$FFA8 UNTALK | Send UNTALK command to serial peripheral bus.
4541 Equivalent : Data = $5F. Command $30.
$FFAB UNLISTN | Send UNLISTEN command to serial peripheral bus.
4541 Equivalent : Data = $3F. Command $30.
$FFB1 LISTEN | Send LISTEN command to the serial peripheral bus.

146

KERNAL Call | Meaning and Equivalent 4541 Command(s)

4541 Equivalent : Data = $20 plus the device
number. Command $30.

$FFB4 TALK Send TALK command to the serial peripheral bus.

4541 Equivalent : Data = $40 plus the device
number. Command $30.

$FFB7 READST | Read the status of the serial peripheral bus.

4541 Equivalent : Read the status bits from $D698.
For convenience, the upp