

MEGA65 TEAM

Assoc. Prof. Paul Gardner-
Stephen
(highlander)
Founder
Software and virtual hardware architect
Spokesman and lead scientist

Martin Streit
(seriously)
Video and photo production
Tax and organization
Social media

Dan Sanderson
(dddaaannn)
Media and documentation
MEGA65.ROM

Dr. Edilbert Kirk
(Bit Shifter)
MEGA65.ROM
Manual and tools

Gábor Lénárt
(LGB)
Emulator

Farai Aschwanden
(Tayger)
Filehost and tools
Financial advisory

Falk Rehwagen
(bluewaysw)
GEOS

Robert Steffens
(kibo)
Network technology
Core bug hunting

Detlef Hastik
(deft)
Co-founder
General manager
Marketing and sales

Oliver Graf
(lydon)
Release management
VHDL and platform enhancements

Antti Lukats
(antti-brain)
Host hardware design and production

Dieter Penner
(doubleflash)
Host hardware support

Mirko H.
(sy2002)
Additional platforms and consulting

Gürçe Işıkyıldız
(gurce)
Tools and enhancements

Daniel England
(Mew Pokémon)
Additional code and tools

Hernán Di Pietro
(indiocolifa)
Additional emulation and tools

Roman Standzikowski
(FeralChild)
Open ROMs

Anton Schneider-Michallek
(adtbm)
Presentation and support

Reporting Errors and Omissions

This book is being continuously refined and improved upon by the MEGA65 community.
The version of this edition is:

c o m m i t 06 a 3 5 d 2 8 5 1 7 6 7 b 1 d 9 a 5 6 0 c 8 c 3 3 b 3 b 7 a 1 7 7 0 f 5 e 4 a

date : Sun May 5 1 5 : 3 3 : 2 5 2024 + 0 9 3 0

We want this book to be the best that it possibly can. So if you see any errors, find
anything that is missing, or would like more information, please report them using the
MEGA65 User’s Guide issue tracker:

https://github.com/mega65/mega65-user-guide/issues
You can also check there to see if anyone else has reported a similar problem, while
you wait for this book to be updated.

Finally, you can always download the latest versions of our suite of books from these
locations:

• https://mega65.org/mega65-book
• https://mega65.org/user-guide
• https://mega65.org/developer-guide
• https://mega65.org/basic65-ref
• https://mega65.org/chipset-ref
• https://mega65.org/docs

https://github.com/mega65/mega65-user-guide/issues
https://mega65.org/mega65-book
https://mega65.org/user-guide
https://mega65.org/developer-guide
https://mega65.org/basic65-ref
https://mega65.org/chipset-ref
https://mega65.org/docs

MEGA65 CHIPSET REFERENCE

Published by
the MEGA Museum of Electronic Games & Art e.V., Germany.

WORK IN PROGRESS

Copyright ©2019 – 2024 by Paul Gardner-Stephen, the MEGA Museum of Electronic
Games & Art e.V., and contributors.

This book is made available under the GNU Free Documentation License v1.3, or later,
if desired. This means that you are free to modify, reproduce and redistribute this book,
subject to certain conditions. The full text of the GNU Free Documentation License
v1.3 can be found at https://www.gnu.org/licenses/fdl-1.3.en.html.
Implicit in this copyright license, is the permission to duplicate and/or redistribute this
document in whole or in part for use in education environments. We want to support
the education of future generations, so if you have any worries or concerns, please
contact us.

May 5, 2024

ii

https://www.gnu.org/licenses/fdl-1.3.en.html

Contents

iv

1 System Memory Map 1

Introduction . 3

MEGA65 Native Memory Map . 4

The First Sixteen 64KB Banks . 4

Colour RAM . 5

Additional RAM . 5

28-bit Address Space . 6

$D000 – $DFFF I/O Personalities . 7

CPU Memory Banking . 10

C64/C65 ROM Emulation . 10

C65 Compatibility ROM Layout . 12

2 VIC-IV Video Interface Controller 13

Features . 17

VIC-II/III/IV Register Access Control . 18

Detecting VIC-II/III/IV . 19

Video Output Formats, Timing and Compatibility 20

Integrated Marvellous Digital Hookup™ (IMDH™) Digital Video Output . 20

Connecting to Naughty Proprietary Digital Video Standards . . 21

Frame Timing . 22

Physical and Logical Rasters . 25

Bad Lines . 25

Memory Interface . 26

Startup Base Addresses . 26

Relocating Screen Memory . 26

Relocating Character Generator Data 27

Relocating Colour / Attribute RAM . 27

Relocating Sprite Pointers and Images 27

Hot Registers . 28

New Modes . 31

v

Why the new VIC-IV modes are Character and Bitmap modes, not Bit-
plane modes . 31

Displaying more than 256 unique characters via ”Super-Extended At-
tribute Mode” . 32

Default Bit Fields (when GOTOX bit is cleared): 34

Bit Fields when GOTOX bit is set: 35

Using Super-Extended Attribute Mode 36

Full-Colour (256 colours per character) Text Mode (FCM) 40

Nibble-colour (16 colours per character) Text Mode (NCM) 40

Alpha-Blending / Anti-Aliasing . 40

Flipping Characters . 41

Variable Width Fonts . 41

Raster Re-write Buffer . 42

Sprites . 43

VIC-II/III Sprite Control . 43

Extended Sprite Image Sets . 43

Variable Sprite Size . 43

Variable Sprite Resolution . 44

Sprite Palette Bank . 44

Full-Colour Sprite Mode . 45

VIC-III Errata Level . 48

VIC-III Errata Levels . 48

VIC-II / C64 Registers . 49

VIC-III / C65 Registers . 52

VIC-IV / MEGA65 Specific Registers . 54

3 Sound Interface Device (SID) 61

SID Registers . 63

vi

4 F018-Compatible Direct Memory Access (DMA) Controller 67

F018A/B DMA Jobs . 69

F018 DMA Job List Format . 70

F018 11 byte DMA List Structure 71

F018B 12 byte DMA List Structure 71

Performing Simple DMA Operations 72

MEGA65 Enhanced DMA Jobs . 78

Texture Scaling and Line Drawing . 81

Inline DMA Lists . 83

Audio DMA . 84

Sample Address Management . 84

Sample Playback frequency and Volume 85

Pure Sine Wave . 85

Sample playback control . 86

F018 “DMAgic” DMA Controller . 86

MEGA65 DMA Controller Extensions . 86

Unimplemented Functionality . 90

5 6526 Complex Interface Adapter (CIA) Registers 91

CIA 6526 Registers . 93

CIA 6526 Hypervisor Registers . 96

6 4551 UART, GPIO and Utility Controller 99

C65 6551 UART Registers . 101

4551 General Purpose I/O & Miscellaneous Interface Registers 102

7 45E100 Fast Ethernet Controller 107

Overview . 109

Differences to the RR-NET and similar solutions 109

Theory of Operation: Receiving Frames 110

Accessing the Ethernet Frame Buffers 111

Theory of Operation: Sending Frames 112

vii

Advanced Features . 113

Broadcast and Multicast Traffic and Promiscuous Mode 113

Debugging and Diagnosis Features 113

Memory Mapped Registers . 114

COMMAND register values . 115

Example Programs . 116

8 45IO27 Multi-Function I/O Controller 117

Overview . 119

F011-compatible Floppy Controller . 119

Multiple Drive Support . 119

Buffered Sector Operations . 120

Reading Sectors from a Disk . 120

Track Auto-Tune Function . 121

Sector Skew and Target Any Mode . 121

Disk Layout and 1581 Logical Sectors 122

FD2000 Disks . 122

High-Density and Variable-Density Disks 123

Track Information Blocks . 123

Formatting Disks . 124

Write Pre-Compensation . 125

Buffered Sector Writing . 125

Floppy Track DMA . 126

Using Floppy Track DMA . 126

Understanding the Limitations of Floppy Drives 127

F011 Floppy Controller Registers . 128

SD card Controller and F011 Virtualisation Functions 130

SD card Based Disk Image Access . 130

F011 Virtualisation . 132

Dual-Bus SD card Controller . 133

Write Gate . 133

viii

Fill Mode . 134

Selecting Among Multiple SD cards 134

SD Controller Command Table 134

Touch Panel Interface . 136

Audio Support Functions . 138

Other Audio Features . 140

Mixer Feedback Registers . 140

8/16 Bit Stereo Digital Audio Registers 141

Pulse Width vs Pulse Density Modulation 141

Miscellaneous I/O Functions . 142

9 4541 Serial Bus Controller 143

Overview . 145

Features of the 4541 . 145

Supports Enhanced Serial Protocol Variants 145

Interrupt Enabled Processor Offload 145

Processor Speed Independence . 145

Co-Existence through Open-Collector Logic 145

Theory of Operation . 145

Examples . 147

Reading the DOS channel status . 147

Command Reference . 149

Register Table . 152

Serial Bus Timing . 154

Send Byte Under Attention . 154

JiffyDOS™ Protocol Solicitation . 157

JiffyDOS™ Send from Controller to Peripheral 159

JiffyDOS™ Controller Receive from Peripheral 161

Talker to Listener Turn-Around . 164

Send Byte With End-or-Indicate (EOI) 166

Receive Byte . 168

ix

Optional Integrated Data-Logger . 169

Extracting Data from the Data Logger 170

10 Reference Tables 173

Units of Storage . 175

Base Conversion . 176

11 Supporters & Donors 181

Organisations . 183

Contributors . 184

Supporters . 185

INDEX 195

x

CHAPTER 1
System Memory Map

• Introduction

• MEGA65 Native Memory Map

• $D000 – $DFFF I/O Personalities

• CPU Memory Banking

• C64/C65 ROM Emulation

2

INTRODUCTION
The MEGA65 computer has a large 28-bit address space, which allows it to address
up to 256MB of memory and memory-mapped devices. This memory map has several
different views, depending on which mode the computer is operating in. Broadly,
there are five main modes: (1) Hypervisor mode; (2) C64 compatibility mode; (3)
C65 compatibility mode; (4) UltiMAX compatibility mode; and (5) MEGA65-mode, or
one of the other modes, where the programmer has made use of MEGA65 enhanced
features.

It is important to understand that, unlike the C128, the C65 andMEGA65 allow access
to all enhanced features from C64-mode, if the programmer wishes to do so. This
means that while we frequently talk about “C64-mode,” “C65-mode” and “MEGA65-
mode,” these are simply terms of convenience for the MEGA65 with its memory map
(and sometimes other features) configured to provide an environment that matches
the appropriate mode. The heart of this is the MEGA65’s flexible memory map.

In this appendix, we will begin by describing the MEGA65’s native memory map, that
is, where all of the memory, I/O devices and other features appear in the 28-bit ad-
dress space. We will then explain how C64 and C65 compatible memory maps are
accessed from this 28-bit address space.

3

MEGA65 NATIVE MEMORY MAP
The First Sixteen 64KB Banks

The MEGA65 uses a similar memory map to that of the C65 for the first MB of memory,
i.e., 16 memory banks of 64KB each. This is because the C65’s 4510 CPU can access
only 1MB of address space. These banks can be accessed from BASIC 65 using the
BANK, DMA, PEEK and POKE commands. The following table summarises the contents
of the first 16 banks:

HEX DEC Address Contents
0 0 $0xxxx First 64KB RAM. This is the RAM visible in

C64-mode.
1 1 $1xxxx Second 64KB RAM. This is the 2nd 64KB

of RAM present on a C65.
2 2 $2xxxx First half of C65 ROM (C64-mode and

shared components) or RAM
3 3 $3xxxx Second half of C65 ROM (C65-mode

components) or RAM
4 4 $4xxxx Additional RAM (384KB or larger chip-

RAM models)
5 5 $5xxxx Additional RAM (384KB or larger chip-

RAM models)
6 6 $6xxxx Additional RAM (*512KB or larger chip-

RAM models)
7 7 $7xxxx Additional RAM (*512KB or larger chip-

RAM models)
8 8 $8xxxx Additional RAM (*1MB or larger chip-

RAM models)
9 9 $9xxxx Additional RAM (*1MB or larger chip-

RAM models)
A 10 $Axxxx Additional RAM (*1MB or larger chip-

RAM models)
B 11 $Bxxxx Additional RAM (*1MB or larger chip-

RAM models)
C 12 $Cxxxx Additional RAM (*1MB or larger chip-

RAM models)
D 13 $Dxxxx Additional RAM (*1MB or larger chip-

RAM models)
E 14 $Exxxx Additional RAM (*1MB or larger chip-

RAM models)
F 15 $Fxxxx Additional RAM (*1MB or larger chip-

RAM models)

4

* Note that the MEGA65 presently only provides a model featuring 384KB of chip-
RAM. Future models may feature larger amounts of chip-RAM (such as 512KB and
1MB).

The key features of this address space are the 128KB of RAM in the first two banks,
which is also present on the C65. If you intend to write programs which can also run
on a C65, you should only use these two banks of RAM.

On all models it is possible to use all or part of the 128KB of “ROM” space as RAM. To
do this, you must first request that the Hypervisor removes the read-only protection on
this area, before you will be able to change its contents. If you are writing a program
which will start from C64-mode, or otherwise switch to using the C64 part of the ROM,
instead of the C65 part), then the second half of that space, i.e., BANK 3, can be safely
used for your programs. This gives a total of 192KB of RAM, which is available on all
models of the MEGA65.

On models that have 384KB or more of chip RAM, BANK 4 and 5 are also available.
Similarly, models which provide 1MB or more of chip RAM will have BANK 6 through 15
also available, giving a total of 896KB (or 960KB, if only the C64 part of the ROM is
required) of RAM available for your programs. Note that the MEGA65’s built-in freeze
cartridge currently freezes only the first 384KB of RAM.

Colour RAM

The MEGA65’s VIC-IV video controller supports much larger screens than the VIC-II
or VIC-III. For this reason, it has access to a separate colour RAM, similar to on the
C64. For compatibility with the C65, the first two kilo-bytes of this are accessible at
$1F800 – $1FFFF. The full 32KB or 64KB of colour RAM is located at $FF80000. This
is most easily accessed through the use of advanced DMA operations, or the 32-bit
base-page indirect addressing mode of the processor.

At the time of writing, the BANK and DMA commands cannot be used to access the
rest of the colour RAM, because the colour RAM is not located in the first mega-byte
of address space. This may be corrected in a future revision of the MEGA65, allowing
access to the full colour RAM via BANK 15 or an equivalent DMA job.

Additional RAM

Apart from the 384kb of chip-RAM found as standard on all MEGA65 models, most
models (devkit, release boards and xemu, but NOT on Nexys boards currently) also
have an extra 8MB of RAM starting at $8000000, referred to as ’ATTIC RAM’. It is not
visible to the other chips (vic/sid/etc) and can’t be used for audio DMA, but code can
run from it (more slowly) or it can be used to store content and DMA it in/out of the
chip-RAM.

There are also plans underway to support a PMOD hyperRAM module (installed via the
trapdoor beneath the MEGA65) in order to provide a further 8MB of RAM starting at
$8800000, referred to as ’CELLAR RAM’.

5

28-bit Address Space

In addition to the C65-style 1MB address space, the MEGA65 extends this to 256MB,
by using 28-bit addresses. The following shows the high-level layout of this address
space.

HEX DEC Size Contents
0000000 0 1 CPU I/O Port Data Direction Register
0000001 1 1 CPU I/O Port Data
0000002
– 005FFFF 2 – 384KB 384KB Fast chip RAM (40MHz)

0060000
– 0FFFFFF 384KB – 16MB 15.6MB Reserved for future chip RAM expansion

1000000
– 3FFFFFF 16MB – 64MB 48MB Reserved

4000000
– 7FFFFFF

64MB –
128MB 64MB Cartridge port and other devices on the

slow bus (1 – 10 MHz)
8000000
– 87FFFFF

128MB –
135MB 8MB 8MB ATTIC RAM (all models apart from

Nexys, presently)
8800000
– 8FFFFFF

135MB –
144MB 8MB 8MB CELLAR RAM (planned PMODmod-

ule installed via trapdoor)
9000000
– EFFFFFF

144MB –
240MB 96MB Reserved for future expansion RAM

F000000
– FF7DFFF

240MB –
255.49MB 15.49MB Reserved for future I/O expansion

FF7E000 –
FF7EFFF

255.49MB –
255.49MB 4KB VIC-IV Character ROM (write only)

FF80000 –
FF87FFF

255.5MB –
255.53MB 32KB VIC-IV Colour RAM (32KB colour RAM -

available on all models)
FF88000 –
FF8FFFF

255.53MB –
255.57MB 32KB Additional VIC-IV Colour RAM (64KB

colour RAM - planned to be available on
R3 models and beyond)

FF90000 –
FFCAFFF

255.53MB –
255.80MB 216KB Reserved

FFCB000
– FFCBFFF

255.80MB –
255.80MB 4KB Emulated C1541 RAM

FFCC000
– FFCFFFF

255.80MB –
255.81MB 16KB Emulated C1541 ROM

FFD0000
– FFD0FFF

255.81MB –
255.81MB 4KB C64 $Dxxx I/O Personality

FFD1000
– FFD1FFF

255.81MB –
255.82MB 4KB C65 $Dxxx I/O Personality

FFD2000
– FFD2FFF

255.82MB –
255.82MB 4KB MEGA65 $Dxxx Ethernet I/O Personality

continued …

6

…continued
HEX DEC Size Contents
FFD3000
– FFD3FFF

255.82MB –
255.82MB 4KB MEGA65 $Dxxx Normal I/O Personality

FFD4000
– FFD5FFF

255.82MB –
255.83MB 8KB Reserved

FFD6000
– FFD67FF

255.83MB –
255.83MB 2KB Hypervisor scratch space

FFD6000
– FFD6BFF

255.83MB –
255.83MB 3KB Hypervisor scratch space

FFD6C00
– FFD6DFF

255.83MB –
255.83MB 512 F011 floppy controller sector buffer

FFD6E00 –
FFD6FFF

255.83MB –
255.83MB 512 SD Card controller sector buffer

FFD7000
– FFD70FF

255.83MB –
255.83MB 256 MEGAphone r1 I2C peripherals

FFD7100
– FFD71FF

255.83MB –
255.83MB 256 MEGA65 r2 I2C peripherals

FFD7200 –
FFD72FF

255.83MB –
255.83MB 256 MEGA65 HDMI I2C registers (only for

R2 and older models fitted with the
ADV7511 HDMI driver chip)

FFD7300
– FFD7FFF

255.83MB –
255.84MB 3.25KB Reserved for future I2C peripherals

FFD8000
– FFDBFFF

255.83MB –
255.86MB 16KB Hypervisor ROM (only visible in Hypervi-

sor Mode)
FFDC000
– FFDDFFF

255.86MB –
255.87MB 8KB Reserved for Hypervisor Mode ROM ex-

pansion
FFDE000 –
FFDE7FF

255.87MB –
255.87MB 2KB Reserved for Ethernet buffer expansion

FFDE800 –
FFDEFFF

255.87MB –
255.87MB 2KB Ethernet frame read buffer (read only)

and Ethernet frame write buffer (write
only)

FFDF000 –
FFDFFFF

255.87MB –
255.87MB 4KB Virtual FPGA registers (selected models

only)
FFE0000 –
FFFFFFF

255.87MB –
256MB 128KB Reserved

$D000 – $DFFF I/O PERSONALITIES
The MEGA65 supports four different I/O personalities. These are selected by writing
the appropriate values to the $D02F KEY register, which is visible in all four I/O per-
sonalities. There is more information in the MEGA65 Book, C64, C65 and MEGA65
Modes (chapter 11) about the use of the KEY register.

7

The following table shows which I/O devices are visible in each of these I/O modes,
as well as the KEY register values that are used to select the I/O personality.

8

HEX C64 C65 MEGA65
ETHERNET MEGA65

KEY $00 $A5, $96 $45, $54 $47, $53
$D000 – $D02F VIC-II VIC-II VIC-II VIC-II
$D030 – $D07F VIC-II1 VIC-III VIC-III VIC-III
$D080 – $D08F VIC-II F011 F011 F011
$D090 – $D09F VIC-II – SD card SD card

$D0A0 – $D0FF VIC-II RAM EXPAND
CONTROL – –

$D100 – $D1FF VIC-II RED Palette RED Palette RED Palette

$D200 – $D2FF VIC-II GREEN
Palette

GREEN
Palette

GREEN
Palette

$D300 – $D3FF VIC-II BLUE Palette BLUE Palette BLUE Palette
$D400 – $D41F SID Right #1 SID Right #1 SID Right #1 SID Right #1
$D420 – $D43F SID Right #2 SID Right #2 SID Right #2 SID Right #2
$D440 – $D45F SID Left #1 SID Left #1 SID Left #1 SID Left #1
$D460 – $D47F SID Left #2 SID Left #2 SID Left #2 SID Left #2
$D480 – $D49F SID Right #1 SID Right #1 SID Right #1 SID Right #1
$D4A0 – $D4BF SID Right #2 SID Right #2 SID Right #2 SID Right #2
$D4C0 – $D4DF SID Left #1 SID Left #1 SID Left #1 SID Left #1
$D4E0 – $D4FF SID Left #2 SID Left #2 SID Left #2 SID Left #2
$D500 – $D5FF SID images – Reserved Reserved
$D600 – $D63F – UART UART UART

$D640 – $D67F – UART images HyperTrap
Registers

HyperTrap
Registers

$D680 – $D6FF – – MEGA65
Devices

MEGA65
Devices

$D700 – $D7FF – – MEGA65
Devices

MEGA65
Devices

$D800 – $DBFF COLOUR RAM COLOUR
RAM

ETHERNET
Buffer

COLOUR
RAM

$DC00 – $DDFF CIAs
CIAs /

COLOUR
RAM

ETHERNET
Buffer

CIAs /
COLOUR

RAM

$DE00 – $DFFF CART I/O CART I/O ETHERNET
Buffer

CART I/O /
SD SECTOR

1 In the C64 I/O personality, $D030 behaves as on C128, allowing
toggling between 1MHz and 2MHz CPU speed.
2 The additional MEGA65 SIDs are visible in all I/O personalities.
3 Some models may replace the repeated images of the first four
SIDs with four additional SIDs, for a total of 8 SIDs.

9

CPU MEMORY BANKING
The 45GS02 processor, like the 6502, can only “see” 64KB of memory at a time.
Access to additional memory is via a selection of bank-switching mechanisms. For
backward-compatibility with the C64 and C65, the memory banking mechanisms for
both of these computers are supported on the MEGA65:

1. C65-style MAP instruction banking

2. C65-style $D030 banking

3. C64-style cartridge banking

4. C64-style $00 / $01 banking

The MAP register overrides all other banking mechanisms. This mechanism selects
which of the eight 8KB regions of the 16-bit address space $0000 – $FFFF are
mapped to other addresses via an offset. If a region is mapped, then the other bank-
ing mechanisms do not apply. This is true even if the offset is 0, allowing the 16-bit
addresses to access RAM in bank 0 (such as address 0.D000).

C65-style $D030 banking and C64-style $00 / $01 banking both select regions to
map to bank 2, which (by default) contains C64 ROM code. These two mechanisms
overlap in which regions they can map to ROM. If either mechanism maps a region to
ROM (and it is not mapped elsewhere by the MAP register), then it is mapped to ROM.

The following diagram shows the different types of banking that can apply to the
different areas of the 64KB that the CPU can see.

MAP MAP LO
(4 x 8KB slabs)

MAP HI
(4 x 8KB slabs)

I/O/CART CART
ROMLO

CART
ROMHI I/O CART

ROMHI

D030 CHARROM BASIC INTER-
FACE KERNAL

C64 BASIC CHAR
ROM KERNAL

RAM RAM RAM RAM RAM RAM RAM
$0000 –
$7FFF

$8000 –
$9FFF

$A000 –
$BFFF

$C000 –
$CFFF

$D000 –
$DFFF

$E000 –
$FFFF

There are actually a few further complications. For example, if the cartridge selects
the UltiMAX™ game mode, then only the first 4KB of RAM will be visible, and the re-
maining address space will be un-mapped, and able to be supplied by the cartridge.

C64/C65 ROM EMULATION
The C64 and C65 use ROM memories to hold the KERNAL and BASIC system. The
MEGA65 is different: It uses 128KB of its 384KB fast chip RAM at $20000 - $3FFFF

10

(banks 2 and 3) to hold these system programs. This makes it possible to change or
upgrade the “ROM” that the MEGA65 is running, without having to open the computer.
It is even possible to use the MEGA65’s Freeze Menu to change the “ROM” being used
while a program is running.

The C64 and C65memory banking methods use this 128KB of area when making ROM
banks visible. When the RAM banks are mapped, they are always read-only. However,
if the MAP instruction or DMA is used to access that address area, it is possible to
write to it. For improved backward compatibility, the whole 128KB region of memory
is normally set to read-only.

A program can, however, request read-write access to this 128KB area of memory, so
that it can make full use of the MEGA65’s 384KB of chip RAM. This is accomplished by
triggering the Toggle Rom Write-protect system trap of the hypervisor. The following
code-fragment demonstrates how to do this. Calling it a second time will re-activate
the write-protection.

LDA # $70

STA $ D 6 4 0

NOP

This fragment works by calling sub-function $70 (toggle ROM write-protect) of Hyper-
visor trap $00. Note that the NOP is mandatory. The MEGA65 I/O personality must be
first selected, so that the $D640 register is un-hidden.

The current write-protection state can be tested by attempting to write to this area of
memory. Also, you can examine and toggle the current state in the MEGA65 Freeze
Menu.

NOTE: If you are starting your program from C65-mode, you must first make sure that
the I/O area is visible at $D000-$DFFF. The simplest way to do this is to use the MAP
instruction with all zero values in the registers. The following fragment demonstrates
this, and also makes sure that the MEGA65 I/O context is active, so that the hypervisor
trap will be able to trigger:

11

; C l e a r C65 m e m o r y map

LDA # $00

TAX

TAY

TAZ

MAP

; Bank I / O in via C64 m e c h a n i s m

LDA # $35

STA $01

; Do M E G A 6 5 / VIC - IV I / O k n o c k

LDA # $47

STA $ D 0 2 F

LDA # $53

STA $ D 0 2 F

; End MAP sequence , thus a l l o w i n g i n t e r r u p t s to o c c u r a g a i n

EOM

; Do H y p e r v i s o r call to un - write - p r o t e c t the ROM area

LDA # $70

STA $ D 6 4 0

NOP

C65 Compatibility ROM Layout

The layout of the C65 compatibility 128KB ROM area is identical to that of the C65:

HEX Contents
$3E000 -- $3FFFF C65 KERNAL
$3D000 -- $3DFFF CHARSET B
$3C000 -- $3CFFF RESERVED
$38000 -- $3BFFF C65 BASIC GRAPHICS ROUTINES
$32000 -- $37FFF C65 BASIC
$30000 -- $31FFF MONITOR (gets mapped at $6000 -- $7FFF)
$2E000 -- $2FFFF C64 KERNAL
$2D000 -- $2DFFF CHARSET C
$2C000 -- $2CFFF INTERFACE
$2A000 -- $2BFFF C64 BASIC
$29000 -- $29FFF CHARSET A
$24000 -- $28FFF RESERVED
$20000 -- $23FFF DOS (gets mapped at $8000 -- $BFFF)

The INTERFACE program is a series of routines that are used by the C65 to switch
between C64-mode, C65-mode and the C65’s built-in DOS. The DOS is located in
the lower-eighth of the ROM.

12

CHAPTER 2
VIC-IV Video Interface

Controller
• Features

• VIC-II/III/IV Register Access Control

• Video Output Formats, Timing and

Compatibility

• Memory Interface

• Hot Registers

• New Modes

• Sprites

• VIC-III Errata Level

• VIC-II / C64 Registers

• VIC-III / C65 Registers

• VIC-IV / MEGA65 Specific Registers

14

15

16

FEATURES
The VIC-IV is a fourth generation Video Interface Controller developed especially for
the MEGA65, and featuring very good backwards compatibility with the VIC-II that
was used in the C64, and the VIC-III that was used in the C65. The VIC-IV can be
programmed as though it were either of those predecessor systems. In addition it
supports a number of new features. It is easy to mix older VIC-II/III features with the
new VIC-IV features, making it easy to transition from the VIC-II or VIC-III to the VIC-IV,
just as the VIC-III made it easy to transition from the VIC-II. Some of the new features
and enhancements of the VIC-IV include:

• Direct access to 384KB RAM (up from 16KB/64KB with the VIC-II and 128KB
with the VIC-III).

• Support for 32KB of 8-bit Colour/Attribute RAM (up from 2KB on the VIC-III),
to support very large screens.

• HDTV 720×576 / 800×600 native resolution at both 50Hz and 60Hz for PAL
and NTSC, with VGA and digital video output.

• 81MHz pixel clock (up from ∼ 8MHz with the VIC-II/III), which enables a wide
range of new features.

• New 16-colour (16×8 pixels per character cell) and 256-colour (8×8 pixels per
character cell) full-colour text modes.

• Support for up to 8,192 unique characters in a character set.

• Four 256-colour palette banks (versus the VIC-III’s single palette bank), each
supporting 23-bit colour depth (versus the VIC-III’s 12-bit colour depth), and
which can be rapidly alternated to create even more colourful graphics than is
possible with the VIC-III.

• Screen, bitmap, colour and character data can be positioned at any address
with byte-level granularity (compared with fixed 1KB – 16KB boundaries with
the VIC-II/III).

• Virtual screen dimensioning, which combined with byte-level data position
granularity provides effective hardware support for scrolling and panning in
both X and Y directions.

• New sprite modes: Bitplane modification, full-colour (15 foreground colours
+ transparency) and tiled modes, allowing a wide variety of new and exciting
sprite-based effects.

• The ability to stack sprites in a bit-planar manner to produce sprites with up to
256 colours.

• Sprites can use 64 bits of data per raster line, allowing sprites to be 64 pixels
wide when using VIC-II/III mono/multi-colour mode, or 16 pixels wide when
using the new VIC-IV full-colour sprite mode.

17

• Sprite tile mode, which allows a sprite to be repeated horizontally across an
entire raster line, allowing sprites to be used to create animated backgrounds
in a memory-efficient manner.

• Sprites can be configured to use a separate 256-colour palette to that used
to draw other text and graphics, allowing for a more colourful display.

• Super-extended attribute mode which uses two screen RAM bytes and two
colour RAM bytes per character mode, which supports a wide variety of new fea-
tures including alpha-blending/anti-aliasing, hardware kerning/variable-
width characters, hardware horizontal/vertical flipping, alternate palette se-
lection and other powerful features that make it easy to create highly dynamic
and colourful displays.

• Raster-Rewrite Buffer which allows hardware-generated pseudo-sprites,
similar to “bobs” on Amiga™ computers, but with the advantage that they are
rendered in the display pipeline, and thus do not need to be un-drawn and re-
drawn to animate them.

• Multiple 8-bit colour play-fields are also possible using the Raster-Rewrite
Buffer.

In short, the VIC-IV is a powerful evolution of the VIC-II/III, while retaining the character
and distinctiveness of the VIC-series of video controllers.

For a full description of the additional registers that the VIC-IV provides, as well as
documentation of the legacy VIC-II and VIC-III registers, refer to the corresponding
sections of this appendix. The remainder of the appendix will focus on describing the
capabilities and use of many of the VIC-IV’s new features.

VIC-II/III/IV REGISTER ACCESS
CONTROL
Because the new features of the VIC-IV are all extensions to the existing VIC-II/III de-
signs, there is no concept of having to select the mode in which the VIC-IV will operate:
It is always in VIC-IV mode. However, for backwards compatibility with software, the
many additional registers of the VIC-IV can be hidden, so that it appears to be either
a VIC-II or VIC-III. This is done in the same manner that the VIC-III uses to hide its new
features from legacy VIC-II software.

The mechanism is the VIC-III write-only KEY register ($D02F, 53295 decimal). The
VIC-III by default conceals its new features until a “knock” sequence is performed.
This consists of writing two special values one after the other to $D02F. The following
table summarises the knock sequences supported by the VIC-IV, and indicates which
are VIC-IV specific, and which are supported by the VIC-III:

18

First Value
Hex (Decimal)

Second Value
Hex (Decimal) Effect VIC-IV

Specific?

$00 (0) $00 (0)

Only VIC-II registers
visible (all VIC-III and
VIC-IV new registers
are hidden)

No

$A5 (165) $96 (150) VIC-III new registers
visible No

$47 (71) $53 (83) Both VIC-III and VIC-IV
new registers visible Yes

$45 (69) $54 (84)

No VIC-II/III/IV
registers visible.
45E100 Ethernet
controller buffers are
visible instead

Yes

Detecting VIC-II/III/IV

Detecting which generation of the VIC-II/III/IV a machine is fitted with can be impor-
tant for programs that support only particular generations, or that wish to vary their
graphical display based on the capabilities of the machine. While there are many pos-
sibilities for this, the following is a simple and effective method. It relies on the fact
that the VIC-III and VIC-IV do not repeat the VIC-II registers throughout the I/O ad-
dress space. Thus while $D000 and $D100 are synonymous when a VIC-II is present
(or a VIC-III/IV is hiding their additional registers), this is not the case when a VIC-III
or VIC-IV is making all of its registers visible. Therefore presence of a VIC-III/IV can
be determined by testing whether these two locations are aliases for the same regis-
ter, or represent separate registers. The detection sequence consists of using the KEY
register to attempt to make either VIC-IV or VIC-III additional registers visible. If either
succeeds, then we can assume that the corresponding generation of VIC is installed.
As the VIC-IV supports the VIC-III KEY knocks, we must first test for the presence of a
VIC-IV. Also, we assume that the MEGA65 starts in VIC-IV mode, even when running
C65 BASIC. Thus the test can be done in BASIC from either C64 or C65-mode as
follows:

0 REM IN C65 - MODE WE C A N N O T S A F E L Y W R I T E TO $D02F , SO WE TEST A D I F F E R E N T WAY

10 IF PEEK ($ D 0 1 8) AND 32 THEN GOTO 65

20 POKE $D000 ,1: POKE $D02F ,71: POKE $D02F ,83

30 POKE $ D 0 0 0 +256 ,0: IF PEEK ($ D 0 0 0)=1 THEN P R I N T " VIC - IV P R E S E N T ": END

40 POKE $D000 ,1: POKE $D02F , 1 6 5 : POKE $D02F ,150

50 POKE $ D 0 0 0 +256 ,0: IF PEEK ($ D 0 0 0)=1 THEN P R I N T " VIC - III P R E S E N T ": END

60 P R I N T " VIC - II P R E S E N T ": END

65 REM WE A S S U M E WE HAVE A C65 HERE

70 V1 = PEEK ($ D 0 5 0): V2 = PEEK ($ D 0 5 0): V3 = PEEK ($ D 0 5 0)

80 IF V1 < > V2 OR V1 < > V3 OR V2 < > V3 THEN P R I N T " VIC - IV P R E S E N T ": END

90 GOTO 40

19

Line 10 of this program checks whether the screen is a multiple of 2KB. As the screen
on the C64 is located at 1KB, this test will fail, and execution will continue to line 20.
Line 20 writes 1 to one of the VIC-II sprite position registers, 53248, before writing
the MEGA65 knock to the key register, 53295. Line 30 writes to 53248 + 256, which
on the C64 is a mirror of 53248, but on a MEGA65 with VIC-IV I/O enabled will be
one of the red palette registers. After writing to 53248 + 256, the program checks
if the register at 53248 has been modified by the write to 53248 + 256. If it has,
then the two addresses point to the same register. This will happen on either a C64 or
C65, but not on a computer with a VIC-IV. Thus if 53248 has not changed, we report
that we have detected a VIC-IV. If writing to 53248 + 256 did change the value in
register 53248, then we proceed to line 40, which writes to 53248 again, and this
time writes the VIC-III knock to the key register. Line 50 is like line 30, but as it appears
after a VIC-III knock, it allows the detection of a VIC-III. Finally, if neither a VIC-IV nor
VIC-III is detected, we conclude that only a VIC-II must be present.

As the MEGA65 is the only C64-class computer that is fitted with a VIC-IV, this can
be used as a de facto test for the presence of a MEGA65 computer. Detection of a
VIC-III can be similarity assumed to indicate the presence of a C65.

VIDEO OUTPUT FORMATS, TIMING
AND COMPATIBILITY
Integrated Marvellous Digital Hookup™ (IMDH™) Digital Video
Output

The MEGA65 features VGA analog video output and Integrated Marvellous Digital
Hookup™ (IMDH™). This is different to existing common digital video standards in
several key points:

1. We didn’t invent a new connector for it: We instead used the most common
digital video connector already in use. So your existing cables should work fine!

2. We didn’t make it purposely incompatible with any existing digital video stan-
dard. So your existing TVs and monitors should work fine!

3. We don’t engage in highway-robbery for other vendors to use the IMDH™ dig-
ital video standard, by trying to charge them $10,000 every year, just for the
permission to be able to sell a single device. This means that the MEGA65 is
cheaper for you!

4. The IMDH™ standard does not allow content-protection or other sovereignty
eroding flim-flam. If you produced the video, you can do whatever you like with
it!

20

Connecting to Naughty Proprietary Digital Video Standards

There are digital video standards that are completely backwards compared with
IMDH™. Fortunately because of IMDH™’s open approach to interoperability, these
should, in most cases, function with the MEGA65 without difficulty. Simply find a
video cable fits the IMDH™ connector on the back of your MEGA65, and connect it to
your MEGA65 and a TV, Monitor or Projector that has the same connector.

However, regrettably, not all manufacturers have submitted their devices for IMDH™
compliance testing with the MEGA65 team. This means that some TVs and Monitors
are, unfortunately, not IMDH™ compliant. Thus while most TVs and Monitors will work
with the MEGA65, you might find that you need to try a couple to get a satisfactory
result. If you do find a monitor that doesn’t work with the MEGA65, please let us know,
and also report the problem to the Monitor vendor, recommending that they submit
their devices for IMDH™ compliance testing.

The VIC-IV was designed for use in the MEGA65 and related systems, including the
MEGAphone family of portable devices. The VIC-IV supports both VGA and digital
video output, using the non-proprietary IMDH™ interface. It also supports parallel
digital video output suitable for driving LCD display panels. Considerable care has
been taken to create a common video front-end that supports these three output
modes.

For simplicity and accuracy of frame timing for legacy software, the video format is
normally based on the HDTV PAL and NTSC 720×576/480 (576p and 480p) modes
using a 27MHz output pixel clock. This is ideal for digital video and LCD display panels.
However not all VGA displays support these modes, especially 720×576 at 50Hz.

In terms of VIC-II and VIC-III backwards compatibility, this display format has several
effects that do not cause problems for most programs, but can cause some differences
in behaviour:

1. Because the VIC-IV display is progressive rather than interlaced, two physical
raster lines are produced for each logical VIC-II or VIC-III raster line. This means
that there are either 63 or 65 cycles per logical double raster, rather than per
physical 576p/480p physical raster. This can cause some minor visual artefacts,
when programs make assumptions about where on a horizontal line the VIC is
drawing when, for example, the border or screen colour is changed.

2. The VIC-IV does not follow the behaviour of the VIC-III, which allowed changes
in video modes, e.g., between text and bitmap mode, on characters. Nor does
it follow the VIC-II’s policy of having such changes take effect immediately. In-
stead, the VIC-IV applies changes at the start of each raster line. This can cause
some minor artefacts.

3. The VIC-IV uses a single-raster rendering buffer which is populated using the
VIC-IV’s internal 81MHz pixel clock, before being displayed using the 27MHz
output pixel clock. This means that a raster lines display content tends to be
rendered much earlier in a raster line than on either the VIC-II or VIC-III. This can
cause some artefacts with displays, particularly in demos that rely on specific
behaviour of the VIC-II at particular cycles in a raster line, for example for effects

21

such as VSP or FLI. At present, such effects are unlikely to display correctly on
the current revision of the VIC-IV. Improved support for these features is planned
for a future revision of the VIC-IV.

4. The 1280×200 and 1280×400 display modes of the VIC-III are not currently
supported, as they cannot be meaningfully displayed on any modern monitor,
and no software is known to support or use this feature.

Frame Timing

Frame timing is designed to match that of the 6502 + VIC-II combination of the C64.
Both PAL and NTSC timing is supported, and the number of cycles per logical raster
line, the number of raster lines per frame, and the number of cycles per frame are
all adjusted accordingly. To achieve this, the VIC-IV ordinarily uses HDTV 576p 50Hz
(PAL) and 480p 60Hz (NTSC) video modes, with timing tweaked to be as close as
possible to double-scan PAL and NTSC composite TV modes as used by the VIC-II.

The VIC-IV produces timing impulses at approximately 1MHz which are used by the
45GS02 processor, so that the correct effective frequency is providedwhen operating
at the 1MHz, 2MHz and 3.5MHz C64, C128 and C65 compatibility modes. This allows
the single machine to switch between accurate PAL and NTSC CPU timing, as well as
video modes. The exact frequency varies between PAL and NTSC modes, to mimic the
behaviour of PAL versus NTSC C64, C128 and C65 processor and video timing.

The PAL frame is constructed from 624 physical raster lines, consisting of 864 pixel
clock ticks. The pixel clock is 27MHz, which is 1/3 the VIC-IV pixel clock. The visible
frame is 720×576 pixels, the entirety of which can be used in VIC-IV mode. In VIC-II
and VIC-III modes, the border area reduces the usable size to 640×400 pixels. In
VIC-II mode and VIC-III 200H modes, the display is double scanned, with two 31.5
micro-second physical rasters corresponding to a single 63 micro-second VIC-II-style
raster line. Thus each frame consists of 312 VIC-II raster lines of 63 micro-seconds
each, exactly matching that of a PAL C64.

22

VIC-II/III Screen Area

Vertical Fly-Back Area

Horiz-
ontal
Fly-Back
Area

720 Visible Pixels

VIC-II/III Border Area

VIC-II/III Border Area

624
Lines

864 Horizontal Ticks
(31.5 μSec per line)

576
Visible
Lines

PAL Frame Timing

The NTSC frame is constructed from 526 physical raster lines, consisting of 858 pixel
clock ticks. The pixel clock is 27MHz, which is 1/3 the VIC-IV pixel clock. The visible
frame is 720×480 pixels, the entirety of which can be used in VIC-IV mode. In VIC-
II and VIC-III modes, the border area reduces the usable size to 640×400 pixels.
In VIC-II mode and VIC-III 200H modes, the display is double scanned, with two 32
micro-second physical rasters corresponding to a single 64 micro-second VIC-II-style
raster line. Thus each frame consists of 263 VIC-II raster lines of 64 micro-seconds
each, matching the most common C64 NTSC video timing.

23

VIC-II/III Screen Area

Vertical Fly-Back Area

Horiz-
ontal
Fly-Back
Area

720 Visible Pixels

VIC-II/III Border Area

VIC-II/III Border Area

526
Lines

858 Horizontal Ticks
(32 μSec per line)

480
Visible
Lines

NTSC Frame Timing

As these HDTV video modes are not supported by all VGA monitors, a compatibility
mode is included that provides a 640×480 VGA-style mode. However, as the pixel
clock of the MEGA65 is fixed at 27MHz, this mode runs at 63Hz. Nonetheless, this
should work on the vast majority of VGA monitors. There should be no problem with
the PAL / NTSC modes when using the digital video output of the MEGA65 with the
vast majority of IMDH™-enabled monitors and TVs.

To determine whether the MEGA65 is operating in PAL or NTSC, you can enter the
Freeze Menu, which displays the current video mode, or from a program you can check
the PALNTSC signal (bit 7 of $D06F, 53359 decimal). If this bit is set, then the machine
is operating in NTSCmode, and clear if operating in PALmode. This bit can bemodified
to change between the modes, e.g.:

24

10 REM E N A B L E C65 + M E G A 6 5 I / O

20 IF PEEK ($ D 0 1 8) <32 THEN POKE $D02F , ASC (" G "): POKE $D02F , ASC (" S ")

30 REM C H E C K NTSC BIT

40 NTSC = PEEK ($ D 0 6 F) AND 128

50 REM D I S P L A Y S T A T E AND ASK FOR T O G G L E

60 P R I N T " M E G A 6 5 IS IN ";: IF NTSC THEN P R I N T " NTSC MODE ": ELSE P R I N T " PAL MODE "

70 I N P U T " S W I T C H M O D E S (Y / N)? " , A$

80 REM T O G G L E NTSC BIT

90 IF A$ =" Y " THEN POKE $D06F , PEEK ($ D 0 6 F) XOR 128: ELSE END

100 REM D I S P L A Y NEW S T A T E

110 NTSC = PEEK ($ D 0 6 F) AND 128

120 P R I N T " M E G A 6 5 IS IN ";: IF NTSC THEN P R I N T " NTSC MODE ": ELSE P R I N T " PAL MODE "

Physical and Logical Rasters

Physical rasters per frame refers to the number of actual raster lines in the PAL or NTSC
Enhanced Definition TV (EDTV) video modes used by the MEGA65. Logical Rasters
refers to the number of VIC-II-style rasters per frame. Each logical raster consists of
two physical rasters per line, since EDTV modes are double-scan modes compared
with the original PAL and NTSC Standard Definition TV modes used by the C64. The
frame parameters of the VIC-IV for PAL and NTSC are as follows:

Standard Cycles per
Raster

Physical
Rasters per
Frame

Logical Rasters
per Frame

PAL 63 626 312
NTSC 65 526 263

The result is that the frames on the VIC-IV consist of exactly the same number of
∼1MHz CPU cycles as on the VIC-II.

Bad Lines

The VIC-IV does not natively incur any “bad lines”, because the VIC-IV has its own
dedicated memory busses to the main memory and colour RAM of the MEGA65. This
means that both the processor and VIC-IV can access the memory at the same time,
unlike on the C64 or C65, where they are alternated.

However, to improve compatibility, the VIC-IV signals when a “bad line” would have
occurred on the VIC-II. The 45GS02 processor of the MEGA65 accepts these bad line
signals, and pauses the CPU for 40 clock cycles, except if the processor is running at
full speed, in which case they are ignored. This improves the timing compatibility with
the VIC-II considerably. However, the timing is not exact, because the current revision
of the 45GS02 pauses for exactly 40 cycles, instead of 40 – 43 cycles, depending
on the instruction being executed at the time. Also, the VIC-IV and 45GS02 do not
currently pause for sprite fetches.

25

The bad line emulation is controlled by bit 0 of $D710: setting this bit enables bad line
emulation, and clearing it prevents any bad line from stealing time from the processor.

MEMORY INTERFACE
The VIC-IV supports up to 16MB of direct access RAM for video data, however at
present, all existing models provide only 384KB of addressable RAM. In MEGA65 sys-
tems, the second block of 128KB of RAM (spanning from 128KB-256KB in the memory
map) is typically used to hold a C65-compatible ROM, leaving 256KB of RAM avail-
able to the user. If software is written to avoid the need to use C65 ROM routines,
then the entire 384KB of RAM can be used by the program.

All MEGA65 models presently support 32KB of colour RAM, however there are plans
for the latest R3 board to support 64KB of colour RAM (or possibly even 128KB).

The VIC-IV supports all legacy VIC-II and VIC-III methods for accessing this RAM, in-
cluding the VIC-II’s use of 16KB banks, and the VIC-III’s Display Address Translator
(DAT). This additional memory can be used for character and bitmap displays, as well
as for sprites. However, the VIC-III bitplane modes remain limited to using only the first
128KB of RAM, as the VIC-IV does not enhance the bitplane mode.

Startup Base Addresses

If no mappings are changed and no screen memory is relocated (see the following
paragraph for more on this) the base addresses can be used to place characters on
the screen and set colour and attributes accordingly:

• $0800 Screen RAM

• $ff80000 Colour RAM

These values are the upper left character on the screen no matter if in 40 or 80 column
mode. In BASIC you can use the dollar sign directly to use the hexadecimal format. For
a far better method in BASIC see the MEGA65 Book, Screen Text and Colour Arrays
(subsection B) .

Relocating Screen Memory

To use the additional memory for screen RAM, the screen RAM start address can be
adjusted to any location in memory with byte-level granularity by setting the SCRNPTR
registers ($D060 – $D063, 53344 – 53347 decimal). For example, to set the screen
memory to address 12345:

REM E N A B L E C65 + M E G A 6 5 I / O

IF PEEK ($ D 0 1 8) <32 THEN POKE $D02F , ASC (" G "): POKE $D02F , ASC (" S ")

POKE $D060 , $45 : POKE $D061 , $23 : POKE $D062 , $1

26

Relocating Character Generator Data

The location of the character generator data can also be set with byte-level precision
via the CHARPTR registers at $D068 – $D06A (53352 – 53354 decimal). As usual,
the first of these registers holds the lowest-order byte, and the last the highest-order
byte. The three bytes allow for placement of character data anywhere in the first
16MB of RAM. For systems with less than 16MB of RAM accessible by the VIC-IV, the
upper address bits should be zero.

For example, to indicate that character generator data should be sourced beginning
at $41200 (266752 decimal), the following could be used. Note that the command
WPOKE can be used to write two bytes as a word into a memory or I/O location.
Therefore, we use WPOKE to write $00 into $D068 and $12 into $D069, and an
additional POKE to write the high byte $A into $D06A by dividing the address by
65536:

REM E N A B L E C65 + M E G A 6 5 I / O

IF PEEK ($ D 0 1 8) <32 THEN POKE $D02F , ASC (" G "): POKE $D02F , ASC (" S ")

REM HEX $ 4 1 2 0 0 IS E A S I L Y D I V I D E D IN ITS 3 B Y T E S $00 , $12 , $4

REM W P O K E SETS THE L O W E R TWO B Y T E S IN ONE C O M M A N D AND

REM THE F O L L O W I N G POKE SETS THE U P P E R BYTE

A = $ 4 1 2 0 0

W P O K E $D068 , A

POKE $D06A , A / 6 5 5 3 6

Relocating Colour / Attribute RAM

The area of colour RAM being used can be similarly set using the COLPTR registers
($D064 – $D065, 53348 – 53349 decimal). That is, the value is an offset from the
start of the colour / attribute RAM. This is because, like on the C64, the colour / at-
tribute RAM of the MEGA65 is a separate memory component, with its own dedicated
connection to the VIC-IV. By default, the COLPTRs are set to zero, which replicates
the behaviour of the VIC-II/III. To set the display to use the colour / attribute RAM
beginning at offset $4000, one could use something like:

REM E N A B L E C65 + M E G A 6 5 I / O

IF PEEK ($ D 0 1 8) <32 THEN POKE $D02F , ASC (" G "): POKE $D02F , ASC (" S ")

REM SET C O L P T R TO $4000 , S P L I T S INTO $00 LSB and $40 MSB

POKE $D064 , $00

POKE $D065 , $40

Relocating Sprite Pointers and Images

The location of the sprite pointers can also be moved, and sprites can be made to have
their data anywhere in first 4MB of memory. This is accomplished by first setting the
location of the sprite pointers by setting the SPRPTRADR registers ($D06C – $D06E,

27

53356 – 53358 decimal, but note that only the bottom 7 bits of $D06E are used,
as the highest bit is used for the SPRPTR16 signal). This allows the list of eight sprite
pointers to be moved from the end of screen RAM to an arbitrary location in the first
8MB of RAM. SPRPTRADR must be aligned to a 16-byte boundary (a multiple of 16).

To allow sprites themselves to be located anywhere in the first 4MB of RAM, the
SPRPTR16 bit in $D06E must be set. In this mode, two bytes are used to indicate
the location of each sprite, instead of one. That is, the list of sprite pointers will be
16 bytes long, instead of 8 bytes long as on the VIC-II/III. When SPRPTR16 is enabled,
the location of the sprite pointers should always be set explicitly via the SPRPTRADR
registers.

For example, to position the sprite pointers at location 800 – 815, you could use
something like the following code. Note that a little gymnastics is required to keep
the SPRPTR16 bit unchanged, and also to work around the AND binary operator not
working with values greater than 65535:

REM E N A B L E C65 + M E G A 6 5 I / O

IF PEEK ($ D 0 1 8) <32 THEN POKE $D02F , ASC (" G "): POKE $D02F , ASC (" S ")

POKE $D06C ,(800 - INT (8 0 0 / 6 5 5 3 6) * 6 5 5 3 6) AND 255

POKE $D06D , INT (8 0 0 / 2 5 6) AND 255

POKE $D06E ,(PEEK ($ D 0 6 E) AND 1 2 8) + INT (8 0 0 / 6 5 5 3 6)

The location of each sprite image remains a multiple of 64 bytes, thus allowing for
up to 65,536 unique sprite images to be used at any point in time, if the system is
equipped with sufficient RAM (4MB or more). In this mode, the VIC-II 16KB banking is
ignored, and the location of sprite data is simply 64× the pointer value. For example,
to have the data for a sprite at $C000 (49152 decimal), this would be sprite location
768, because 49152 divided by 64 = 768. We then need to split 768 into high and
low bytes, to set the two pointer bytes: 768 = 256×3, with remainder 0, so this would
require the two sprite pointer bytes to be 0 (low byte, which comes first) and 3 (high
byte). Thus if the sprite pointers were located at $7F8 (2040 decimal), setting the
first sprite to sprite image 768 could be done with something like:

POKE 2040 ,768 -256* INT (7 6 8 / 2 5 6)

POKE 2041 , INT (7 6 8 / 2 5 6)

HOT REGISTERS
Some VIC-IV registers support features similar to the VIC-II and VIC-III, but with ex-
panded capabilities. For backwards compatibility, writing to specific VIC-II and VIC-III
registers also causes related VIC-IV registers to reset with consistent values. This be-
havior can be configured with the HOTREG flag in bit 7 of $D05D.

For example, the lower four bits of register $D018 (CB) set the VIC-II character set ad-
dress, as a multiple of 1 KiB. VIC-IV can locate the character set to any 24-bit address

28

using $D06A (CHARPTRBNK), $D068 (CHARPTRLSB), and $D069 (CHARPTRMSB).
If you set CB, the VIC-IV registers will also be updated to match.

The complete set of VIC-II “hot” registers that affect VIC-IV registers include:

• $D011 (53265): RB8, ECM, BMM, BLNK, RSEL, YSCL

• $D016 (53270): RST, MCM, CSEL, XSCL

• $D018 (53272): VS, CB

• $D031 (53297): VIC-III modes: H640, FAST, ATTR, BPM, V400, H1280, MONO,
INT

• The VIC-II bank bits of $DD00 (56576) (CIA 2 PORTA)

Whenever any of those registers are modified, even by writing the existing value back
into them, all of the corresponding VIC-IV registers will be updated based on the VIC-
II register values, even those unrelated to the register that was written to. This includes
the FAST flag, which resides in a hot register byte location ($D031) but is unrelated
to video parameters and does not have a corresponding VIC-IV register.

The registers that are modified during this process are listed below. Note that some of
these registers are internal to the VIC-IV, and cannot be directly queried or modified
by the user. Where this is the case, no addresses are listed for the registers.

• Xposition of the left side border edge. This internal register is updated set the
left side border to the width indicated in the Single Side Border Width registers
($D05C contains the LSB, and bits 0 – 5 of $D05D contain the MSB of the side
border width. Note that the width of the side border is based on the low-level
video frame dimensions, not the display screen size of the video mode. The
38/40 column field of $D016 is set to 38 columns, the left border edge will
appear 14 pixels to the right of its normal position.

• X position of the right side border edge. This is the same as the left side
border edge, but for the right-hand edge of the screen. Note that if the 38/40
column flag is set to 38 columns, that the right border edge is moved 17 pixels
to the left of its normal position.

• Y position of the top border edge ($D048 LSB, bits 0 – 3 of $D049 MSB).
This internal register is set to the normal top position of the screen, minus the
value of the RASLINE0 field in bits 0 – 5 of $D06F. If the 24/25 rows field of
$D011 is set to 24 rows, then the edge of the top border will be lowed by 8
raster lines.

• Y position of the bottom border edge ($D04A LSB, bits 0 – 3 of $D04BMSB).
This internal register is set to the normal top position of the screen, plus 400
raster lines, to create the normal 400px tall primary display area within the bor-
ders. If the 24/25 rows field of $D011 is set to 24 rows, then the edge of the
top border will be raised by 8 raster lines.

29

• CharacterGenerator Vertical Scale ($D05B). This register is set to 0 for V200
or 1 for V400 modes, to cause each row of pixels in a character to be either 1
or 2 pixels tall, respectively, according to the V400 flag.

• Number of character rows to display ($D07B). This register is set to either
25-1 = 24 or 50-1 = 49 to display either 25 or 50 rows of text. Note that when
$D011 is used to bring the vertical borders inwards to reduce the number of
visible character rows, that the VIC-IV still draws all 25 or 50 rows.

• X PositionWhere Character Display Starts ($D04C LSB, bits 0 – 3 of $D04D
MSB). This register is set to a position relative to the edge of the 40-column
wide text display, plus 2× the smooth scrolling position indicated in $D016.

• Y Position Where Character Display Starts ($D04E LSB, buts 0 – 3 of $D04F
MSB). This register is set to the top edge of the vertical border, minus the VIC-II
First Raster adjustment register (bits 0 –5 of $D06F), plus any offset due to the
vertical smooth-scroll bits in $D011.

• Virtual Row Width ($D058 LSB, $D059 MSB), i.e., the number of bytes of
screen and colour RAM that the VIC-IV advances when displaying each
successive row of characters. This register is set to 40 if the H640 flag is
clear, or to 80 if the H640 flag is set, making the advance match the number of
characters to be displayed.

• Display Row Width ($D05E LSB, bits 4 – 5 of $D063 MSB). This register is set
to 40 if the H640 flag is clear, or to 80 if the H640 flag is set.

• Base Address of Screen RAM ($D060 – $D062, representing a 24-bit ad-
dress). This address is reset to the address as computed by reference to $D018
and $DD00, as on the C64.

• VIC-II Sprite Pointer Address ($D06C – $D06E, representing a 24-bit ad-
dress). This register is reset to the normal location at the end of the screen
memory of the current mode. If the H640 flag is set, then this will be at the end
of 2KB screen RAM area, or if the H640 flag is not set, it will point to the end of
the 1KB screen RAM area, as on a C64.

• Character Set Base Address ($D068 – $D06A, representing a 24-bit ad-
dress). Note that the hot register function sets only the lower 16 bits of the
character set address. That is, $D06A is not cleared. This is an intentional
behaviour, that makes it easier to replace the character set in existing VIC-II-
oriented software with another character set in another bank of RAM.

• Colour RAM Base Address ($D064 LSB, $D065 MSB). These registers are re-
set to zero, causing the VIC-IV to expect the colour RAM for the screen to be in
the first part of the colour RAM, to be compatible with the VIC-II and VIC-III.

This behavior of the VIC-II registers is intended primarily for legacy software that is not
aware of (and therefore never writes to) VIC-IV registers. Hot register propagation can
be disabled by clearing the HOTREG (“hot register”) signal: bit 7 of $D05D (53341).

30

If you clear the HOTREG flag, you will need to update VIC-IV registers directly when
you wish to change video mode parameters.

If you make a change to a hot register while HOTREG is disabled then re-enable
HOTREG, all hot registers update immediately. There are rare cases where you might
want to make a change to a hot register without updating VIC-IV registers but also
want hot registers enabled after the change. To do this, you can cancel the pending
update by writing a 0 to HOTREG again just before re-enabling hot registers. The full
procedure is:

1. Write 0 to HOTREG to disable hot registers.

2. Update the VIC-II register you want to change.

3. Write 0 to HOTREG to cancel the pending update.

4. Write 1 to HOTREG to re-enable hot registers.

In assembly language:

lda # % 1 0 0 0 0 0 0 0

trb $ d 0 5 d ; d i s a b l e hot r e g i s t e r s

lda # % 0 1 0 0 0 0 0 0

tsb $ d 0 3 1 ; u p d a t e a VIC - II / III r e g i s t e r

lda # % 1 0 0 0 0 0 0 0

trb $ d 0 5 d ; c l e a r p e n d i n g u p d a t e

tsb $ d 0 5 d ; re - e n a b l e hot r e g i s t e r s

NEW MODES
Why the new VIC-IV modes are Character and Bitmap modes, not
Bitplane modes

The new VIC-IV video modes are derived from the VIC-II character and bitmap modes,
rather than the VIC-III bitplane modes. This decision was based on several realities of
programming a memory-constrained 8-bit home computer:

1. Bitplanes require that the same amount of memory is given to each area on
screen, regardless of whether it is showing empty space, or complex graphics.
There is no way with bitplanes to reuse content from within an image in another
part of the image. However, most C64 games use highly repetitive displays, with
common elements appearing in various places on the screen, of which Boulder
Dash and Super Giana Sisters would be good examples.

2. Bitplanes also make it difficult to update a display, because every pixel is unique,
in that there is no way to make a change, for example to the animation in an

31

onscreen element, and have it take effect in all places at the same time. The
diamond animations in Boulder Dash are a good example of this problem. The
requirement to modify multiple separate bytes in each bitplane create an in-
creased computational burden, which is why there were calls for the Amiga AAA
chip-set to include so-called “chunky” modes, rather than just bitplane based
modes. While the Display Address Translator (DAT) and DMAgic of the C65 pro-
vide some relief to this problem, the relief is only partial.

3. Scrolling using the C65 bitplanes requires copying the entire bitplane, as the
hardware support for smooth scrolling does not extend to changing the bitplane
source address in a fine manner. Even using the DMAgic to assist, scrolling a
320×200 256-colour display requires 128,000 clock cycles in the best case
(reading and writing 320×200 = 64000 bytes). At 3.5MHz on the C65 this
would require about 36 milli-seconds, or about 2 complete video frames. Thus
for smooth scrolling of such a display, a double buffered arrangement would be
required, which would consume 128,000 of the 131,072 bytes of memory.

In contrast, the well known character modes of the VIC-II are widely used in
games, due to their ability to allow a small amount of screen memory to select
which 8×8 block of pixels to display, allowing very rapid scrolling, reducedmem-
ory consumption, and effective hardware acceleration of animation of common
elements. Thus the focus of improvements in the VIC-IV has been on character
mode. As bitmap mode on the VIC-II is effectively a special case of character
mode, with implied character numbers, it comes along free for the ride on the
VIC-IV, and will only be mentioned in the context of a very few bitmap-mode
specific improvements that were trivial to make, and it thus seemed foolish to
not implement, in case they find use.

Displaying more than 256 unique characters via ”Super-Extended
Attribute Mode”

The primary innovation is the addition of the Super-Extended Attribute Mode. The
VIC-II already uses 12 bits per character: Each 8×8 cell is defined by 12 bits of data:
8 bits of screen RAM data, by default from $0400 – $07E7 (1024 – 2023 decimal),
indicating which characters to show, and 4 bits of colour data from the 1K nibble
colour RAM at $D800 – $DBFF (55296 – 56319 decimal). The VIC-III of the C65
uses 16 bits, as the colour RAM is now 8 bits, instead of 4, with the extra 4 bits of
colour RAM being used to support attributes (blink, bold, underline and reverse video).
It is recommended to revise how this works, before reading the following. A good
introduction to the VIC-II text mode can be found in many places. Super-Extended
Attribute mode doubles the number of bits per character used from the VIC-III’s 16,
to 32: Two bytes of screen RAM and two bytes of colour/attribute RAM.

Super-Extended AttributeMode is enabled by setting bit 0 in $D054 (53332 decimal).
Remember to first enable VIC-IV mode, to make this register accessible. When this bit
is set, two bytes are used for each of the screen memory and colour RAM for each
character shown on the display. Thus, in contrast to the 12 bits of information that
the C64 uses per character, and the 16 bits that the VIC-III uses, the VIC-IV has 32

32

bits of information. How those 32 bits are used varies slightly among the particular
modes, as described in the following tables, including whether the GOTOX bit is set.

Note also that enabling BOLD and REVERSE attributes at the same time on the
MEGA65 selects an alternate palette, effectively allowing 512 colours on screen, but
each 8×8 character can use colours only from one 256 colour palette.

33

Default Bit Fields (when GOTOX bit is cleared):

Bit(s) Function when GOTOX bit is cleared
Screen RAM byte 0

Bits 7 - 0 Low byte of character number, the same as the VIC-II and VIC-III
Screen RAM byte 1

Bits 7 – 5 Trim pixels from right-hand side of character (bits 0 – 2)

Bits 4 - 0 Upper 5 bits of character number (bits 8 – 12), allowing
addressing of 8,192 unique characters

Colour RAM byte 0
Bit 7 Vertically flip the character
Bit 6 Horizontally flip the character

Bit 5
Enable alpha blend mode, pixel values are treated as alpha values
blending between foreground colour and background colour
(needs bit 7 of $d054 set)

Bit 4

GOTOX is cleared (set to 0)
GOTOX allows repositioning of characters along a raster via the
Raster-Rewrite Buffer, discussed later). Must be set to 0 for
displaying characters – when set, it moves the position where the
next character will be drawn, without actually drawing anything.
See the following table for more explanation of this mode.

Bit 3

If set, Full-Colour characters use 4 bits per pixel and are 16 pixels
wide (less any right-hand side trim bits), instead of using 8 bits per
pixel. When using 8 bits per pixels, the characters are the normal
8 pixels wide

Bit 2 Trim pixels from right-hand side of character (bit 3)
Bits 1 – 0 Number of pixels to trim from top or bottom of character

Colour RAM byte 1
If VIC-II multi-colour mode is enabled:

Bits 7 – 4 Upper 4 bits of colour of character
If VIC-III extended attributes are enabled:

Bit 7 Hardware underlining of character
Bit 6 Hardware bold attribute of character *
Bit 5 Hardware reverse video enable of character *
Bit 4 Hardware blink of character

Remaining bit-field is common:
Bits 3 – 0 Low 4 bits of colour of character

34

Bit Fields when GOTOX bit is set:

Bit(s) Function when GOTOX bit is set
Screen RAM byte 0

Bits 7 - 0

Lower 8 bits of new X position to start drawing the next character,
relative to the start of character drawing. Setting to 0 causes the
next character to be drawn over the top of the left-most
character.

Screen RAM byte 1

Bits 7 - 5

FCM Character data Y offset: Characters display normally when
set to zero. When non-zero, 8 × the value is added to the
character address. With careful planning, this can be used to
smoothly vertically scroll multiple layers of RRB content.

Bits 4 - 3 RESERVED, set to 0

Bits 1 - 0 Upper 2 bits of new X position (Highest bit is 2’s complement
signed bit)

Colour RAM byte 0

Bit 7 If set, then background/transparent pixels will not be drawn for
subsequent characters, allowing layering

Bit 6
If set, the following characters will be rendered as background,
allowing sprites to appear in front of them, even when sprites are
set to background.

Bit 5 RESERVED, set to 0

Bit 4 GOTOX, set to 1. GOTOX allows repositioning of characters
along a raster via the Raster-Rewrite Buffer, discussed later).

Bit 3

ROWMASK. If set, then the pixel row mask is used to determine
which pixel rows of the following characters should be rendered.
This can be used to vertically scroll characters using the
Raster-Rewrite Buffer, by drawing each character twice, once
shifted down on the screen line on which it appears, and a second
time, shifted up in the following screen line, and masked so that
only the pixel rows belonging to the scrolled character are
displayed, and not data from either before or after that
character’s data.

Bit 2 If set, the following characters will be drawn as foreground,
regardless of their colour, allowing sprites to appear behind them.

Bits 1 - 0 RESERVED, set to 0
Colour RAM byte 1

Bits 7 - 0 Pixel row mask flags

We can see that we still have the C64 style bottom 8 bits of the character number
in the first screen byte. The second byte of screen memory gets five extra bits for
that, allowing 213 = 8,192 different characters to be used on a single screen. That’s
more than enough for unique characters covering an 80×50 screen (which is possible
to create with the VIC-IV). The remaining bits allow for trimming of the character.

35

This allows for variable width characters, which can be used to do things that would
not normally be possible, such as using text mode for free horizontal placement of
characters (or parts thereof). This was originally added to provide hardware support
for proportional width fonts.

For the colour RAM, the second byte (byte 1) is the same as the C65, i.e., the lower
half providing four bits of foreground colour, as on the C64, plus the optional VIC-
III extended attributes. The C65 specifications document describes the behaviour
when more than one of these are used together, most of which are logical, but there
are a few combinations that behave differently than one might expect. For example,
combining bold with blink causes the character to toggle between bold and normal
mode. Bold mode itself is implemented by effectively acting as bit 4 of the foreground
colour value, causing the colour to be drawn from different palette entries than usual.

However, if you do not need VIC-III extended attributes, you can instead use the upper
four bits of the second byte of colour RAM to contain more bits for the colour index,
allowing selection from the full range of 256 colour entries. This mode is activated by
enabling the VIC-II’s multi-colour mode while full-colour mode is active.

The C65 / VIC-III attributes and the use of 256 colour 8-bit values for various VIC-II
colour registers is enabled by setting bit 5 of $D031 (53297 decimal). Therefore this
is highly recommended when using the VIC-IV mode, as otherwise certain functions
will not behave as expected. Note that BOLD+REVERSE together has the meaning of
selecting an alternate palette on the MEGA65, which differs from the C65.

Many effects are possible due to Super-Extended Attribute Mode. A few possibilities
are explained in the following sub-sections.

Using Super-Extended Attribute Mode

Super-Extended Attribute Mode requires double the screen RAM and colour RAM as
the VIC-II/III text modes. This is because two bytes of each are required to define each
character, instead of one. The screen RAM can be located anywhere in the 384KB of
main memory using registers $D060 – $D062 (53344 – 53346 decimal). The colour
RAM can be located anywhere in the 32KB colour RAM. Only the first 1 or 2KB of
the colour RAM is visible at $D800 – $DBFF or $D800 – $DFFF (if the CRAM2K signal
is set in bit 0 of $D030, 53296 decimal). Thus if using a screen larger than 40×25
characters use of the DMA controller or some other means is required to access the full
amount of colour RAM. Therefor we will initially discuss using Super-Extended Attribute
Mode with a 40x25 character display.

The first step is to enable the Super-Extended Attribute Mode by asserting the FCLRHI
and CHR16 signals, by setting bits 2 and 0 of $D054 (53332 decimal). As this is
a VIC-IV register, we must first enable the VIC-IV I/O mode. The VIC-IV must also
be configured to 40 column mode, by clearing the H640 signal by clearing bit 7 of
$D031 (53297 decimal). This is because each pair of characters will be used to form
a single character on screen, with one character requiring two screen RAM bytes, thus
80 screen RAM bytes are required to display 40 characters. Similarly 80 colour RAM
bytes are required as well.

36

To understand this visually, it is helpful to first consider the normal C64 screen memory
layout:

$400 $401 $402 $403 $404 $405 $406 $407 $408 $409 $40a $40b $40c $40d $40e $40f $410 $411 $412 $413 $414 $415 $416 $417 $418 $419 $41a $41b $41c $41d $41e $41f $420 $421 $422 $423 $424 $425 $426 $427

$428 $429 $42a $42b $42c $42d $42e $42f $430 $431 $432 $433 $434 $435 $436 $437 $438 $439 $43a $43b $43c $43d $43e $43f $440 $441 $442 $443 $444 $445 $446 $447 $448 $449 $44a $44b $44c $44d $44e $44f

$450 $451 $452 $453 $454 $455 $456 $457 $458 $459 $45a $45b $45c $45d $45e $45f $460 $461 $462 $463 $464 $465 $466 $467 $468 $469 $46a $46b $46c $46d $46e $46f $470 $471 $472 $473 $474 $475 $476 $477

$478 $479 $47a $47b $47c $47d $47e $47f $480 $481 $482 $483 $484 $485 $486 $487 $488 $489 $48a $48b $48c $48d $48e $48f $490 $491 $492 $493 $494 $495 $496 $497 $498 $499 $49a $49b $49c $49d $49e $49f

$4a0 $4a1 $4a2 $4a3 $4a4 $4a5 $4a6 $4a7 $4a8 $4a9 $4aa $4ab $4ac $4ad $4ae $4af $4b0 $4b1 $4b2 $4b3 $4b4 $4b5 $4b6 $4b7 $4b8 $4b9 $4ba $4bb $4bc $4bd $4be $4bf $4c0 $4c1 $4c2 $4c3 $4c4 $4c5 $4c6 $4c7

$4c8 $4c9 $4ca $4cb $4cc $4cd $4ce $4cf $4d0 $4d1 $4d2 $4d3 $4d4 $4d5 $4d6 $4d7 $4d8 $4d9 $4da $4db $4dc $4dd $4de $4df $4e0 $4e1 $4e2 $4e3 $4e4 $4e5 $4e6 $4e7 $4e8 $4e9 $4ea $4eb $4ec $4ed $4ee $4ef

$4f0 $4f1 $4f2 $4f3 $4f4 $4f5 $4f6 $4f7 $4f8 $4f9 $4fa $4fb $4fc $4fd $4fe $4ff $500 $501 $502 $503 $504 $505 $506 $507 $508 $509 $50a $50b $50c $50d $50e $50f $510 $511 $512 $513 $514 $515 $516 $517

$518 $519 $51a $51b $51c $51d $51e $51f $520 $521 $522 $523 $524 $525 $526 $527 $528 $529 $52a $52b $52c $52d $52e $52f $530 $531 $532 $533 $534 $535 $536 $537 $538 $539 $53a $53b $53c $53d $53e $53f

$540 $541 $542 $543 $544 $545 $546 $547 $548 $549 $54a $54b $54c $54d $54e $54f $550 $551 $552 $553 $554 $555 $556 $557 $558 $559 $55a $55b $55c $55d $55e $55f $560 $561 $562 $563 $564 $565 $566 $567

$568 $569 $56a $56b $56c $56d $56e $56f $570 $571 $572 $573 $574 $575 $576 $577 $578 $579 $57a $57b $57c $57d $57e $57f $580 $581 $582 $583 $584 $585 $586 $587 $588 $589 $58a $58b $58c $58d $58e $58f

$590 $591 $592 $593 $594 $595 $596 $597 $598 $599 $59a $59b $59c $59d $59e $59f $5a0 $5a1 $5a2 $5a3 $5a4 $5a5 $5a6 $5a7 $5a8 $5a9 $5aa $5ab $5ac $5ad $5ae $5af $5b0 $5b1 $5b2 $5b3 $5b4 $5b5 $5b6 $5b7

$5b8 $5b9 $5ba $5bb $5bc $5bd $5be $5bf $5c0 $5c1 $5c2 $5c3 $5c4 $5c5 $5c6 $5c7 $5c8 $5c9 $5ca $5cb $5cc $5cd $5ce $5cf $5d0 $5d1 $5d2 $5d3 $5d4 $5d5 $5d6 $5d7 $5d8 $5d9 $5da $5db $5dc $5dd $5de $5df

$5e0 $5e1 $5e2 $5e3 $5e4 $5e5 $5e6 $5e7 $5e8 $5e9 $5ea $5eb $5ec $5ed $5ee $5ef $5f0 $5f1 $5f2 $5f3 $5f4 $5f5 $5f6 $5f7 $5f8 $5f9 $5fa $5fb $5fc $5fd $5fe $5ff $600 $601 $602 $603 $604 $605 $606 $607

$608 $609 $60a $60b $60c $60d $60e $60f $610 $611 $612 $613 $614 $615 $616 $617 $618 $619 $61a $61b $61c $61d $61e $61f $620 $621 $622 $623 $624 $625 $626 $627 $628 $629 $62a $62b $62c $62d $62e $62f

$630 $631 $632 $633 $634 $635 $636 $637 $638 $639 $63a $63b $63c $63d $63e $63f $640 $641 $642 $643 $644 $645 $646 $647 $648 $649 $64a $64b $64c $64d $64e $64f $650 $651 $652 $653 $654 $655 $656 $657

$658 $659 $65a $65b $65c $65d $65e $65f $660 $661 $662 $663 $664 $665 $666 $667 $668 $669 $66a $66b $66c $66d $66e $66f $670 $671 $672 $673 $674 $675 $676 $677 $678 $679 $67a $67b $67c $67d $67e $67f

$680 $681 $682 $683 $684 $685 $686 $687 $688 $689 $68a $68b $68c $68d $68e $68f $690 $691 $692 $693 $694 $695 $696 $697 $698 $699 $69a $69b $69c $69d $69e $69f $6a0 $6a1 $6a2 $6a3 $6a4 $6a5 $6a6 $6a7

$6a8 $6a9 $6aa $6ab $6ac $6ad $6ae $6af $6b0 $6b1 $6b2 $6b3 $6b4 $6b5 $6b6 $6b7 $6b8 $6b9 $6ba $6bb $6bc $6bd $6be $6bf $6c0 $6c1 $6c2 $6c3 $6c4 $6c5 $6c6 $6c7 $6c8 $6c9 $6ca $6cb $6cc $6cd $6ce $6cf

$6d0 $6d1 $6d2 $6d3 $6d4 $6d5 $6d6 $6d7 $6d8 $6d9 $6da $6db $6dc $6dd $6de $6df $6e0 $6e1 $6e2 $6e3 $6e4 $6e5 $6e6 $6e7 $6e8 $6e9 $6ea $6eb $6ec $6ed $6ee $6ef $6f0 $6f1 $6f2 $6f3 $6f4 $6f5 $6f6 $6f7

$6f8 $6f9 $6fa $6fb $6fc $6fd $6fe $6ff $700 $701 $702 $703 $704 $705 $706 $707 $708 $709 $70a $70b $70c $70d $70e $70f $710 $711 $712 $713 $714 $715 $716 $717 $718 $719 $71a $71b $71c $71d $71e $71f

$720 $721 $722 $723 $724 $725 $726 $727 $728 $729 $72a $72b $72c $72d $72e $72f $730 $731 $732 $733 $734 $735 $736 $737 $738 $739 $73a $73b $73c $73d $73e $73f $740 $741 $742 $743 $744 $745 $746 $747

$748 $749 $74a $74b $74c $74d $74e $74f $750 $751 $752 $753 $754 $755 $756 $757 $758 $759 $75a $75b $75c $75d $75e $75f $760 $761 $762 $763 $764 $765 $766 $767 $768 $769 $76a $76b $76c $76d $76e $76f

$770 $771 $772 $773 $774 $775 $776 $777 $778 $779 $77a $77b $77c $77d $77e $77f $780 $781 $782 $783 $784 $785 $786 $787 $788 $789 $78a $78b $78c $78d $78e $78f $790 $791 $792 $793 $794 $795 $796 $797

$798 $799 $79a $79b $79c $79d $79e $79f $7a0 $7a1 $7a2 $7a3 $7a4 $7a5 $7a6 $7a7 $7a8 $7a9 $7aa $7ab $7ac $7ad $7ae $7af $7b0 $7b1 $7b2 $7b3 $7b4 $7b5 $7b6 $7b7 $7b8 $7b9 $7ba $7bb $7bc $7bd $7be $7bf

$7c0 $7c1 $7c2 $7c3 $7c4 $7c5 $7c6 $7c7 $7c8 $7c9 $7ca $7cb $7cc $7cd $7ce $7cf $7d0 $7d1 $7d2 $7d3 $7d4 $7d5 $7d6 $7d7 $7d8 $7d9 $7da $7db $7dc $7dd $7de $7df $7e0 $7e1 $7e2 $7e3 $7e4 $7e5 $7e6 $7e7

That is, each character cell uses one byte of screen RAM, and the addresses increase
smoothly, both within lines, and between lines. Super-Extended Attribute Mode re-
quires two bytes per character cell. So if you set $D054 to $05, for example, you will
get screen addresses like this:

37

$400 $402 $404 $406 $408 $40a $40c $40e $410 $412 $414 $416 $418 $41a $41c $41e $420 $422 $424 $426 $428 $42a $42c $42e $430 $432 $434 $436 $438 $43a $43c $43e $440 $442 $444 $446 $448 $44a $44c $44e

$428 $42a $42c $42e $430 $432 $434 $436 $438 $43a $43c $43e $440 $442 $444 $446 $448 $44a $44c $44e $450 $452 $454 $456 $458 $45a $45c $45e $460 $462 $464 $466 $468 $46a $46c $46e $470 $472 $474 $476

$450 $452 $454 $456 $458 $45a $45c $45e $460 $462 $464 $466 $468 $46a $46c $46e $470 $472 $474 $476 $478 $47a $47c $47e $480 $482 $484 $486 $488 $48a $48c $48e $490 $492 $494 $496 $498 $49a $49c $49e

$478 $47a $47c $47e $480 $482 $484 $486 $488 $48a $48c $48e $490 $492 $494 $496 $498 $49a $49c $49e $4a0 $4a2 $4a4 $4a6 $4a8 $4aa $4ac $4ae $4b0 $4b2 $4b4 $4b6 $4b8 $4ba $4bc $4be $4c0 $4c2 $4c4 $4c6

$4a0 $4a2 $4a4 $4a6 $4a8 $4aa $4ac $4ae $4b0 $4b2 $4b4 $4b6 $4b8 $4ba $4bc $4be $4c0 $4c2 $4c4 $4c6 $4c8 $4ca $4cc $4ce $4d0 $4d2 $4d4 $4d6 $4d8 $4da $4dc $4de $4e0 $4e2 $4e4 $4e6 $4e8 $4ea $4ec $4ee

$4c8 $4ca $4cc $4ce $4d0 $4d2 $4d4 $4d6 $4d8 $4da $4dc $4de $4e0 $4e2 $4e4 $4e6 $4e8 $4ea $4ec $4ee $4f0 $4f2 $4f4 $4f6 $4f8 $4fa $4fc $4fe $500 $502 $504 $506 $508 $50a $50c $50e $510 $512 $514 $516

$4f0 $4f2 $4f4 $4f6 $4f8 $4fa $4fc $4fe $500 $502 $504 $506 $508 $50a $50c $50e $510 $512 $514 $516 $518 $51a $51c $51e $520 $522 $524 $526 $528 $52a $52c $52e $530 $532 $534 $536 $538 $53a $53c $53e

$518 $51a $51c $51e $520 $522 $524 $526 $528 $52a $52c $52e $530 $532 $534 $536 $538 $53a $53c $53e $540 $542 $544 $546 $548 $54a $54c $54e $550 $552 $554 $556 $558 $55a $55c $55e $560 $562 $564 $566

$540 $542 $544 $546 $548 $54a $54c $54e $550 $552 $554 $556 $558 $55a $55c $55e $560 $562 $564 $566 $568 $56a $56c $56e $570 $572 $574 $576 $578 $57a $57c $57e $580 $582 $584 $586 $588 $58a $58c $58e

$568 $56a $56c $56e $570 $572 $574 $576 $578 $57a $57c $57e $580 $582 $584 $586 $588 $58a $58c $58e $590 $592 $594 $596 $598 $59a $59c $59e $5a0 $5a2 $5a4 $5a6 $5a8 $5aa $5ac $5ae $5b0 $5b2 $5b4 $5b6

$590 $592 $594 $596 $598 $59a $59c $59e $5a0 $5a2 $5a4 $5a6 $5a8 $5aa $5ac $5ae $5b0 $5b2 $5b4 $5b6 $5b8 $5ba $5bc $5be $5c0 $5c2 $5c4 $5c6 $5c8 $5ca $5cc $5ce $5d0 $5d2 $5d4 $5d6 $5d8 $5da $5dc $5de

$5b8 $5ba $5bc $5be $5c0 $5c2 $5c4 $5c6 $5c8 $5ca $5cc $5ce $5d0 $5d2 $5d4 $5d6 $5d8 $5da $5dc $5de $5e0 $5e2 $5e4 $5e6 $5e8 $5ea $5ec $5ee $5f0 $5f2 $5f4 $5f6 $5f8 $5fa $5fc $5fe $600 $602 $604 $606

$5e0 $5e2 $5e4 $5e6 $5e8 $5ea $5ec $5ee $5f0 $5f2 $5f4 $5f6 $5f8 $5fa $5fc $5fe $600 $602 $604 $606 $608 $60a $60c $60e $610 $612 $614 $616 $618 $61a $61c $61e $620 $622 $624 $626 $628 $62a $62c $62e

$608 $60a $60c $60e $610 $612 $614 $616 $618 $61a $61c $61e $620 $622 $624 $626 $628 $62a $62c $62e $630 $632 $634 $636 $638 $63a $63c $63e $640 $642 $644 $646 $648 $64a $64c $64e $650 $652 $654 $656

$630 $632 $634 $636 $638 $63a $63c $63e $640 $642 $644 $646 $648 $64a $64c $64e $650 $652 $654 $656 $658 $65a $65c $65e $660 $662 $664 $666 $668 $66a $66c $66e $670 $672 $674 $676 $678 $67a $67c $67e

$658 $65a $65c $65e $660 $662 $664 $666 $668 $66a $66c $66e $670 $672 $674 $676 $678 $67a $67c $67e $680 $682 $684 $686 $688 $68a $68c $68e $690 $692 $694 $696 $698 $69a $69c $69e $6a0 $6a2 $6a4 $6a6

$680 $682 $684 $686 $688 $68a $68c $68e $690 $692 $694 $696 $698 $69a $69c $69e $6a0 $6a2 $6a4 $6a6 $6a8 $6aa $6ac $6ae $6b0 $6b2 $6b4 $6b6 $6b8 $6ba $6bc $6be $6c0 $6c2 $6c4 $6c6 $6c8 $6ca $6cc $6ce

$6a8 $6aa $6ac $6ae $6b0 $6b2 $6b4 $6b6 $6b8 $6ba $6bc $6be $6c0 $6c2 $6c4 $6c6 $6c8 $6ca $6cc $6ce $6d0 $6d2 $6d4 $6d6 $6d8 $6da $6dc $6de $6e0 $6e2 $6e4 $6e6 $6e8 $6ea $6ec $6ee $6f0 $6f2 $6f4 $6f6

$6d0 $6d2 $6d4 $6d6 $6d8 $6da $6dc $6de $6e0 $6e2 $6e4 $6e6 $6e8 $6ea $6ec $6ee $6f0 $6f2 $6f4 $6f6 $6f8 $6fa $6fc $6fe $700 $702 $704 $706 $708 $70a $70c $70e $710 $712 $714 $716 $718 $71a $71c $71e

$6f8 $6fa $6fc $6fe $700 $702 $704 $706 $708 $70a $70c $70e $710 $712 $714 $716 $718 $71a $71c $71e $720 $722 $724 $726 $728 $72a $72c $72e $730 $732 $734 $736 $738 $73a $73c $73e $740 $742 $744 $746

$720 $722 $724 $726 $728 $72a $72c $72e $730 $732 $734 $736 $738 $73a $73c $73e $740 $742 $744 $746 $748 $74a $74c $74e $750 $752 $754 $756 $758 $75a $75c $75e $760 $762 $764 $766 $768 $76a $76c $76e

$748 $74a $74c $74e $750 $752 $754 $756 $758 $75a $75c $75e $760 $762 $764 $766 $768 $76a $76c $76e $770 $772 $774 $776 $778 $77a $77c $77e $780 $782 $784 $786 $788 $78a $78c $78e $790 $792 $794 $796

$770 $772 $774 $776 $778 $77a $77c $77e $780 $782 $784 $786 $788 $78a $78c $78e $790 $792 $794 $796 $798 $79a $79c $79e $7a0 $7a2 $7a4 $7a6 $7a8 $7aa $7ac $7ae $7b0 $7b2 $7b4 $7b6 $7b8 $7ba $7bc $7be

$798 $79a $79c $79e $7a0 $7a2 $7a4 $7a6 $7a8 $7aa $7ac $7ae $7b0 $7b2 $7b4 $7b6 $7b8 $7ba $7bc $7be $7c0 $7c2 $7c4 $7c6 $7c8 $7ca $7cc $7ce $7d0 $7d2 $7d4 $7d6 $7d8 $7da $7dc $7de $7e0 $7e2 $7e4 $7e6

$7c0 $7c2 $7c4 $7c6 $7c8 $7ca $7cc $7ce $7d0 $7d2 $7d4 $7d6 $7d8 $7da $7dc $7de $7e0 $7e2 $7e4 $7e6 $7e8 $7ea $7ec $7ee $7f0 $7f2 $7f4 $7f6 $7f8 $7fa $7fc $7fe $800 $802 $804 $806 $808 $80a $80c $80e

There are two things to notice in the above table: First, the address advances by
two bytes for each character cell, because two bytes are required to define each
character. Second, the start address of each screen line still only advances by 40
($28 in hexadecimal). This isn’t what we really want, because it means that half of
the previous row will get displayed again on each current row. This is fixed by setting
the number of bytes to advance each screen row in $D058 (LSB) and $D059 (MSB).
So in this case, we want to increase the number of bytes skipped each line from 40
bytes, to 80 bytes, which we can do by setting $D058 to 80 ($50 in hexadecimal),
and $D059 to 0. This gives us a screen layout like this:

38

$400 $402 $404 $406 $408 $40a $40c $40e $410 $412 $414 $416 $418 $41a $41c $41e $420 $422 $424 $426 $428 $42a $42c $42e $430 $432 $434 $436 $438 $43a $43c $43e $440 $442 $444 $446 $448 $44a $44c $44e

$450 $452 $454 $456 $458 $45a $45c $45e $460 $462 $464 $466 $468 $46a $46c $46e $470 $472 $474 $476 $478 $47a $47c $47e $480 $482 $484 $486 $488 $48a $48c $48e $490 $492 $494 $496 $498 $49a $49c $49e

$4a0 $4a2 $4a4 $4a6 $4a8 $4aa $4ac $4ae $4b0 $4b2 $4b4 $4b6 $4b8 $4ba $4bc $4be $4c0 $4c2 $4c4 $4c6 $4c8 $4ca $4cc $4ce $4d0 $4d2 $4d4 $4d6 $4d8 $4da $4dc $4de $4e0 $4e2 $4e4 $4e6 $4e8 $4ea $4ec $4ee

$4f0 $4f2 $4f4 $4f6 $4f8 $4fa $4fc $4fe $500 $502 $504 $506 $508 $50a $50c $50e $510 $512 $514 $516 $518 $51a $51c $51e $520 $522 $524 $526 $528 $52a $52c $52e $530 $532 $534 $536 $538 $53a $53c $53e

$540 $542 $544 $546 $548 $54a $54c $54e $550 $552 $554 $556 $558 $55a $55c $55e $560 $562 $564 $566 $568 $56a $56c $56e $570 $572 $574 $576 $578 $57a $57c $57e $580 $582 $584 $586 $588 $58a $58c $58e

$590 $592 $594 $596 $598 $59a $59c $59e $5a0 $5a2 $5a4 $5a6 $5a8 $5aa $5ac $5ae $5b0 $5b2 $5b4 $5b6 $5b8 $5ba $5bc $5be $5c0 $5c2 $5c4 $5c6 $5c8 $5ca $5cc $5ce $5d0 $5d2 $5d4 $5d6 $5d8 $5da $5dc $5de

$5e0 $5e2 $5e4 $5e6 $5e8 $5ea $5ec $5ee $5f0 $5f2 $5f4 $5f6 $5f8 $5fa $5fc $5fe $600 $602 $604 $606 $608 $60a $60c $60e $610 $612 $614 $616 $618 $61a $61c $61e $620 $622 $624 $626 $628 $62a $62c $62e

$630 $632 $634 $636 $638 $63a $63c $63e $640 $642 $644 $646 $648 $64a $64c $64e $650 $652 $654 $656 $658 $65a $65c $65e $660 $662 $664 $666 $668 $66a $66c $66e $670 $672 $674 $676 $678 $67a $67c $67e

$680 $682 $684 $686 $688 $68a $68c $68e $690 $692 $694 $696 $698 $69a $69c $69e $6a0 $6a2 $6a4 $6a6 $6a8 $6aa $6ac $6ae $6b0 $6b2 $6b4 $6b6 $6b8 $6ba $6bc $6be $6c0 $6c2 $6c4 $6c6 $6c8 $6ca $6cc $6ce

$6d0 $6d2 $6d4 $6d6 $6d8 $6da $6dc $6de $6e0 $6e2 $6e4 $6e6 $6e8 $6ea $6ec $6ee $6f0 $6f2 $6f4 $6f6 $6f8 $6fa $6fc $6fe $700 $702 $704 $706 $708 $70a $70c $70e $710 $712 $714 $716 $718 $71a $71c $71e

$720 $722 $724 $726 $728 $72a $72c $72e $730 $732 $734 $736 $738 $73a $73c $73e $740 $742 $744 $746 $748 $74a $74c $74e $750 $752 $754 $756 $758 $75a $75c $75e $760 $762 $764 $766 $768 $76a $76c $76e

$770 $772 $774 $776 $778 $77a $77c $77e $780 $782 $784 $786 $788 $78a $78c $78e $790 $792 $794 $796 $798 $79a $79c $79e $7a0 $7a2 $7a4 $7a6 $7a8 $7aa $7ac $7ae $7b0 $7b2 $7b4 $7b6 $7b8 $7ba $7bc $7be

$7c0 $7c2 $7c4 $7c6 $7c8 $7ca $7cc $7ce $7d0 $7d2 $7d4 $7d6 $7d8 $7da $7dc $7de $7e0 $7e2 $7e4 $7e6 $7e8 $7ea $7ec $7ee $7f0 $7f2 $7f4 $7f6 $7f8 $7fa $7fc $7fe $800 $802 $804 $806 $808 $80a $80c $80e

$810 $812 $814 $816 $818 $81a $81c $81e $820 $822 $824 $826 $828 $82a $82c $82e $830 $832 $834 $836 $838 $83a $83c $83e $840 $842 $844 $846 $848 $84a $84c $84e $850 $852 $854 $856 $858 $85a $85c $85e

$860 $862 $864 $866 $868 $86a $86c $86e $870 $872 $874 $876 $878 $87a $87c $87e $880 $882 $884 $886 $888 $88a $88c $88e $890 $892 $894 $896 $898 $89a $89c $89e $8a0 $8a2 $8a4 $8a6 $8a8 $8aa $8ac $8ae

$8b0 $8b2 $8b4 $8b6 $8b8 $8ba $8bc $8be $8c0 $8c2 $8c4 $8c6 $8c8 $8ca $8cc $8ce $8d0 $8d2 $8d4 $8d6 $8d8 $8da $8dc $8de $8e0 $8e2 $8e4 $8e6 $8e8 $8ea $8ec $8ee $8f0 $8f2 $8f4 $8f6 $8f8 $8fa $8fc $8fe

$900 $902 $904 $906 $908 $90a $90c $90e $910 $912 $914 $916 $918 $91a $91c $91e $920 $922 $924 $926 $928 $92a $92c $92e $930 $932 $934 $936 $938 $93a $93c $93e $940 $942 $944 $946 $948 $94a $94c $94e

$950 $952 $954 $956 $958 $95a $95c $95e $960 $962 $964 $966 $968 $96a $96c $96e $970 $972 $974 $976 $978 $97a $97c $97e $980 $982 $984 $986 $988 $98a $98c $98e $990 $992 $994 $996 $998 $99a $99c $99e

$9a0 $9a2 $9a4 $9a6 $9a8 $9aa $9ac $9ae $9b0 $9b2 $9b4 $9b6 $9b8 $9ba $9bc $9be $9c0 $9c2 $9c4 $9c6 $9c8 $9ca $9cc $9ce $9d0 $9d2 $9d4 $9d6 $9d8 $9da $9dc $9de $9e0 $9e2 $9e4 $9e6 $9e8 $9ea $9ec $9ee

$9f0 $9f2 $9f4 $9f6 $9f8 $9fa $9fc $9fe $a00 $a02 $a04 $a06 $a08 $a0a $a0c $a0e $a10 $a12 $a14 $a16 $a18 $a1a $a1c $a1e $a20 $a22 $a24 $a26 $a28 $a2a $a2c $a2e $a30 $a32 $a34 $a36 $a38 $a3a $a3c $a3e

$a40 $a42 $a44 $a46 $a48 $a4a $a4c $a4e $a50 $a52 $a54 $a56 $a58 $a5a $a5c $a5e $a60 $a62 $a64 $a66 $a68 $a6a $a6c $a6e $a70 $a72 $a74 $a76 $a78 $a7a $a7c $a7e $a80 $a82 $a84 $a86 $a88 $a8a $a8c $a8e

$a90 $a92 $a94 $a96 $a98 $a9a $a9c $a9e $aa0 $aa2 $aa4 $aa6 $aa8 $aaa $aac $aae $ab0 $ab2 $ab4 $ab6 $ab8 $aba $abc $abe $ac0 $ac2 $ac4 $ac6 $ac8 $aca $acc $ace $ad0 $ad2 $ad4 $ad6 $ad8 $ada $adc $ade

$ae0 $ae2 $ae4 $ae6 $ae8 $aea $aec $aee $af0 $af2 $af4 $af6 $af8 $afa $afc $afe $b00 $b02 $b04 $b06 $b08 $b0a $b0c $b0e $b10 $b12 $b14 $b16 $b18 $b1a $b1c $b1e $b20 $b22 $b24 $b26 $b28 $b2a $b2c $b2e

$b30 $b32 $b34 $b36 $b38 $b3a $b3c $b3e $b40 $b42 $b44 $b46 $b48 $b4a $b4c $b4e $b50 $b52 $b54 $b56 $b58 $b5a $b5c $b5e $b60 $b62 $b64 $b66 $b68 $b6a $b6c $b6e $b70 $b72 $b74 $b76 $b78 $b7a $b7c $b7e

$b80 $b82 $b84 $b86 $b88 $b8a $b8c $b8e $b90 $b92 $b94 $b96 $b98 $b9a $b9c $b9e $ba0 $ba2 $ba4 $ba6 $ba8 $baa $bac $bae $bb0 $bb2 $bb4 $bb6 $bb8 $bba $bbc $bbe $bc0 $bc2 $bc4 $bc6 $bc8 $bca $bcc $bce

It is possible to use Super-Extended Attribute Mode from C65-mode, by setting the
screen to 80 columns, as the C65 ROM sets up 2KB for both the screen RAM and
colour RAM, and this automatically sets $D058 and $D059 to the correct value for
40×2 = 80 bytes per screen line. The user need only to treat each character pair as a
single Super-Extended Attribute character, and to enable Super-Extended Attribute
Mode, as described above.

Because pairs of colour RAM and screen RAM bytes are used to define each character,
care must be taken to initialise and manipulate the screen. A good approach is to set
the text colour to black, because this is colour code 0, and then to fill the screen with
@ characters, because that is character code 0. You can then have several ways to
manipulate the screen. You can use the normal PRINT command and carefully construct
strings that will put the correct values into each screen and colour byte pair. Another
approach is to use the BANK and POKE commands to directly set the contents of the
screen and colour RAM.

Managing a Super-Extended Attribute Mode screen in this way using BASIC 65 is
of course rather a hack, and is only suggested as a relatively simple way to begin
experimenting. You will almost certainly want to quickly move to using custom screen
handling code, most probably in assembly, to manipulate Super-Extended Attribute
Mode screens, although this approach of using BASIC 65 can be quite powerful, by
allowing use of existing screen scrolling and other manipulations.

XXX Example program

The following descriptions assume that you have implemented one of the methods
described above to set the screen and colour RAM.

39

Full-Colour (256 colours per character) Text Mode (FCM)

In normal VIC-II/III text mode, one byte is used for each row of pixels in a character.
As a reminder for how those modes work, in hi-res mode, each pixel is either the back-
ground or foreground colour, based on the state of one bit in the byte. Multi-colour
mode uses two bits to select between four possible colours, but as there are still only
8 bits to describe each row of 8 pixels, each pair of pixels has the same colour. The
VIC-IV’s full-colour text mode removes these limitations, and allows each pixel of a
character to be chosen from the 256 colour of either the primary or alternate palette
bank, without sacrificing horizontal resolution.

To do this, each character now requires 64 bytes of data. The address of the data
is 64 × the character number, regardless of the character set address. FCM should
normally be used with Super-Extended Attribute Mode (SEAM), so that more than 256
unique characters can be address. As SEAM allows the selection of 8,192 unique
characters, this allows FCM character data to be placed anywhere in the first 512KB
of chip RAM (but note that most models of the MEGA65 have only 384KB of chip RAM).

Please note that the pixel value $ff will not select the corresponding colour code di-
rectly. Instead, it will select the colour code defined by the colour RAM.

Nibble-colour (16 colours per character) Text Mode (NCM)

The Nibble-Colour Mode (NCM) for text is similar to Full-Colour Text Mode, except that
each byte of data describes two pixels using 4 bits each. This makes the NCM unique,
because the characters will be 16 pixels wide, instead of the usual 8 pixels wide.
This can be used to create colourful displays, without using as much memory as FCM,
because fewer characters are required to cover the screen. Unlike the VIC-II’s MCM,
this mode does not result in a loss of horizontal resolution.

In NCM the lower four bits of the pixel colour comes from the upper or lower four bits of
the pixel data. The upper four bits of the colour code come from the colour RAM data
for the displayed character. This makes it possible to use all palette entries in NCM,
although the limitation of 16 colours per character remains. Similar to the behaviour
of FCM, the pixel data value $f will select the pixel colour set in the colour RAM.

A further advantage of NCM is that it uses fewer bus cycles per pixel than FCM, be-
cause fewer character data fetches need to occur per raster line. Together with the
reduced memory requirements, this makes NCM particularly useful for creating colour-
ful multiple layers of graphics. This allows the VIC-IV to display arcade style displays
with more colours than many 16-bit computers.

XXX

Alpha-Blending / Anti-Aliasing

The VIC-IV supports blending of characters with the background colour, enabling ef-
fects such as anti-aliased font rendering. Blending is possible on a per character basis.
It is enabled for a specific character if the following conditions are met:

40

1. The ALPHAEN signal is set in bit 7 of $D054.

2. The CHR16 signal is set in bit 0 of $D054 to enable Super-Extended Attribute
Mode (SEAM).

3. Full-Colour Text Mode (FCM) is enabled for the character.

If alpha-blending is enabled for a character, its 8-bit pixel values are treated as alpha
values instead of palette indices. The actual pixel colour is determined by blending
the background colour with the character’s foreground colour defined in the colour
RAM. An alpha value of 0 represents full transparency, showing only the background
colour for that pixel.

Note that the alpha-blending is only applied between the background colour and the
character’s foreground colour. This means that any characters behind the current
character will effectively not be visible (character layers can be composed by using
GOTOX repositioning). However, programmers should assume that blending with pre-
vious layers will be supported in a future implementation. To avoid issues with such
a change you should not put any characters behind a character with alpha-blending
enabled.

Flipping Characters
XXX

Variable Width Fonts

There are 4 bits that allow trimming pixels from the right edge of characters when they
are displayed. This has the effect of making characters narrower. This can be useful
for making more attractive text displays, where narrow characters, such as “i” take
less space than wider characters, such as “m”, without having to use a bitmap display.
This feature can be used to make it very efficient to display such variable-width text
displays – both in terms of memory usage and processing time.

This feature can be combined with full-colour text mode, alpha blending mode and
4-bits per pixel mode to allow characters that consist of 15 levels of intensity between
the background and foreground colour, and that are up to 16 pixels wide. Further,
the GOTO bit can be used to implement negative kerning, so that character pairs like
A and T do not have excessive white space between them when printed adjacently.
The prudent use of these features can result in highly impressive text display, similar to
that on modern 32-bit and 64-bit systems, but that are still efficient enough to be im-
plemented on a relatively constrained system such as the MEGA65. The “MegaWAT!?”
presentation software for the MEGA65 uses several of these features to produce its
attractive anti-aliased proportional text display on slides.

XXX MEGAWat!? screenshot

XXX Example program

41

Raster Re-write Buffer

If the GOTO bit is set for a character in Super-Extended Attribute Mode, instead of
painting a character, the position on the raster is back-tracked (or advanced forward
to) the pixel position specified in the low 10 bits of the screen memory bytes. If the
vertical flip bit is set, then this has the alternate meaning of preventing the background
colour from being painted. This combination can be used to print text material over
the top of other text material, providing a crude supplement to the 8 hardware sprites.
The amount of material is limited only by the raster time of the VIC-IV. Some experi-
mentation will be required to determine how much can be achieved in PAL and NTSC
modes.

If the GOTO bit is set for a character, and the character width reduction bits are also
set, they are interpretted as a Y offset to add to the character data address, but
only in Full Colour Mode. Setting Y=1 causes the character data to be fetched from
8 bytes later, i.e., the first row of character data will come from the address where
the second row of character data would normally be fetched. Similary for increased
values the character data will be fetched from further character rows. With careful
arrangement of characters in memory, it is possible to use this feature to provide free
vertical placement of soft sprites, without needing to copy the character data.

If the GOTO bit is set for a character, and the Nybl Colour Mode (NCM) bit is also
set, then the second colour RAM byte for that character is used to set the Row Mask
bits. For each bit set in the row mask, the corresponding row of characters in the line
will not be displayed. This can be used in combination with the Y offset feature to
effectively provide a character by character smooth vertical scrolling function.

This ability to draw multiple layers of text and graphics is highly powerful. For example,
it can be used to provide multiple overlapping layers of separately scrollable graphics.
This gives many of the advantages of bitplane-based play-fields on other computers,
such as the Amiga, but without the disadvantages of bitplanes.

A good introduction to the Raster Re-write Buffer and its uses can be found in this
video:

https://www.youtube.com/watch?v=00bm5uBeBos&feature=youtu.be
One important aspect of the RRB, is that the VIC-IV will display only the character
data to the left of, and including, the last drawn character. This means that if you use
the GOTO token to overwrite multiple layers of graphics, you must either make sure
that the last layer reaches to the right-hand edge of the display, or you must include
a GOTO token that moves the render position to the right-hand edge of the display.

XXX Example program

42

https://www.youtube.com/watch?v=00bm5uBeBos&feature=youtu.be

SPRITES
VIC-II/III Sprite Control

The control of sprites for C64 / VIC-II/III compatibility is unchanged from the C64. The
only practical differences are very minor. In particular the VIC-IV uses ring-buffer for
each sprites data when rendering a raster. This means that a sprite can be displayed
multiple times per raster line, thus potentially allowing for horizontal multiplexing.

Extended Sprite Image Sets

On the VIC-II and VIC-III, all sprites must draw their image data from a single 16KB
region of memory at any point in time. This limits the number of different sprite images
to 256, because each sprite image occupies 64 bytes. In practice, the same 16KB
region must also contain either bitmap, text or bitplane data, considerably reducing
the number of sprite images that can be used at the same time.

The VIC-IV removes this limitation, by allowing sprite data to be placed anywhere in
memory, although still on 64-byte boundaries. This is done by setting the SPRPTR16
signal (bit 7, $D06E, decimal 53358), which tells the VIC-IV to expect two bytes per
sprite pointer instead of one. These addresses are then absolute addresses, and ignore
the 16KB VIC-II bank selection logic. Thus 16 bytes are required instead of 8 bytes.
The list of pointers can also be placed anywhere in memory by setting the SPRPTRADR
($D06C – $D06D, 53356 – 53357 decimal) and SPRPTRBNK signals (bits 0 – 6, $D06E,
53358 decimal). This allows for sprite data to be located anywhere in the first 4MB of
RAM, and the sprite pointer list to be located anywhere in the first 8MB of RAM. Note
that typical installations of the VIC-IV have only 384KB of connected RAM, so these
limitations are of no practical effect. However, the upper bits of the SPRPTRBNK signal
should be set to zero to avoid forward-compatibility problems.

One reason for supporting more sprite images is that sprites on the VIC-IV can require
more than one 64 byte image slot. For example, enabling Extra-Wide Sprite Mode
means that a sprite will require 8×21 = 168 bytes, and will thus occupy four VIC-II
style 64 byte sprite image slots. If variable height sprites are used, this can grow to
as much as 8×255 = 2,040 bytes per sprite.

Variable Sprite Size

Sprites can be one of three widths with the VIC-IV:

1. Normal VIC-II width (24 pixels wide).

2. Extra Wide, where 64 bits (8 bytes) of data are used per raster line, instead of
the VIC-II’s 24. This results in sprites that are 64 pixels wide, unless Full-Colour
Sprite Mode is selected for a sprite, in which case the sprite will be 64 bits ÷ 4
bits per pixel = 16 pixels wide.

43

3. Tiled mode, where the sprite is drawn repeatedly until the end of the raster line.
Tiled mode should normally only be used with Extra Wide sprite mode, as the
tiling always occurs using 64 bits of sprite data per line. Enabling tiled mode
with normal 24 bit wide mono or multi-colour sprite data will draw 2 and 2/3
rows of sprite data as a single row, even if the given sprite is not in Extra Wide
mode, resulting in garbled displays.

To enable a sprite to be 64 pixels (or 16 pixels if in Full-Colour Sprite Mode), set the
corresponding bit for the sprite in the SPRX64EN register at ($D057, 53335 decimal).
Enabling Full Colour mode for a sprite implicitly enables extended width mode, causes
these sprites to be 16 pixels wide.

Similarly, sprites can be various heights: Sprites will be either the 21 pixels high of
the VIC-II, or if the corresponding bit for the sprite is enabled in the SPRHGTEN signal
($D055, 53333 decimal), then that sprite will be the number of pixels tall that is set in
the SPRHGT register ($D056, 53334 decimal), from 0 to 255. Notice that all sprites
with SPRHGTEN enabled share the same height. A sprite can always leave the bottom
of its image data transparent.

To enable tiled mode for a sprite, set the corresponding bit of SPRTILEN. For sprites 0
through 3, set bits 4 through 7 of $D04D (53325 decimal). For sprites 4 through 7,
set bits 4 through 7 of $D04F (55327 decimal).

Variable Sprite Resolution

By default, sprites are the same resolution as on the VIC-II, i.e., each sprite pixel is
two physical pixels wide and high. However, sprites can be made to use the native
resolution, where sprite pixels are one physical pixel wide and/or high. This is achieved
by setting the relevant bit for the sprite in the SPRENV400 ($D076, 53366 decimal)
registers to increase the vertical resolution on a sprite-by-sprite basis. The horizontal
resolution for all sprites is either the normal VIC-II resolution, or if the SPR640 signal
is set (bit 4 of $D054, 53332 decimal), then sprites will have the same horizontal
resolution as the physical pixels of the display.

Sprite Palette Bank

The VIC-IV has four palette banks, compared with the single palette bank of the VIC-
III. The VIC-IV allows the selection of separate palette banks for bitmap/text graphics
and for sprites. This makes it easy to have very colourful displays, where the sprites
have different colours to the rest of the display, or to use palette animation to achieve
interesting visual effects in sprites, without disturbing the palette used by other ele-
ments of the display.

The sprite palette bank is selected by setting the SPRPALSEL signal in bits 2 and 3 of
the register $D070 (53360 decimal). It is possible to set this to the same bank as
the bitmap/text display, or to select a different palette bank. Palette bank selection
takes effect immediately. Don’t forget that to be able to modify a palette, you have
to also bank it to be the palette accessible via the palette bank registers at $D100 –
$D3FF by setting the MAPEDPAL signal in bits 6 and 7 of $D070.

44

Full-Colour Sprite Mode

In addition to monochrome and multi-colour modes, the VIC-IV supports a new full-
colour sprite mode. In this mode, four bits are used to encode each sprite pixel. How-
ever, unlike multi-colour mode where pairs of bits encode pairs of pixels, in full-colour
mode the pixels remain at their normal horizontal resolution. The colour zero is consid-
ered transparent. If you wish to use black in a full-colour sprite, you must configure the
palette bank that is selected for sprites so that one of the 15 colours for the specific
sprite encodes black.

Full-colour sprite mode is selectable for each sprite by setting the appropriate bit in
the SPR16EN register ($D06B, 53355 decimal).

To enable the eight sprites to have 15 unique colours each, the sprite colour is drawn
using the palette entry corresponding to: spritenumber × 16 + nibblevalue, where
spritenumber is the number of the sprite (from 0 to 7), and nibblevalue is the value of
the half-byte that contains the sprite data for the pixel. In addition, if bitplane mode
is enabled for this sprite, then 128 is added to the colour value, which makes it easy
to switch between two colour schemes for a given sprite by changing only one bit in
the SPRBPMEN register.

Because Full-Colour Sprite Mode requires four bits per pixel, sprites will be only six
pixels wide, unless Extra Wide Sprite Mode is enabled for a sprite, in which case the
sprite will be 16 pixels wide. Tiled Mode also works with Full-Colour Sprite Mode, and
will result in the 16 full-colour pixels of the sprite being repeated until the end of the
raster line.

The following BASIC program draws a Full-Colour Sprite in either C64 or C65-mode:

45

10 P R I N T CHR$ (1 4 7)

20 REM C65 / C64 - MODE D E T E C T

30 IF PEEK (5 3 2 7 2) AND 32 THEN GOTO 100

40 POKE 53295 , ASC (" G "): POKE 53295 , ASC (" S ")

100 REM S E T U P S P R I T E

110 AD = 4 0 9 6 : REM $ 1 0 0 0 S P R I T E ADDR

120 TC =10 : REM T R A N S P A R E N T C O L O U R

130 SPR = PEEK (5 3 3 5 6) + PEEK (5 3 3 5 7) * 2 5 6 : REM GET S P R I T E T A B L E A D D R E S S

140 POKE SPR , AD /64 : REM SET S P R I T E A D D R E S S

150 FOR I = AD TO AD +168 : REM C L E A R S P R I T E WITH TC

160 POKE I , TC + TC *16 : REM ONE BYTE = 2 P I X E L

170 NEXT

180 POKE 53287 , TC : REM SET T R A N S P A R E N T C O L O U R

190 POKE 53 24 8 , 10 0 : REM PUT S P R I T E ...

200 POKE 53 24 9 , 10 0 : REM ON S C R E E N AT 100 ,100

210 POKE 53355 ,1 : REM MAKE S P R I T E 0 16 - C O L O U R

220 POKE 53335 ,1 : REM MAKE S P R I T E 0 USE 16 X4 - BITS

230 POKE 53269 ,1 : REM E N A B L E S P R I T E 0

240 G O S U B 900 : REM READ MULTI - C O L O U R S P R I T E

250 END

900 REM LOAD S P R I T E FROM DATA

910 READ N$: IF N$ =" END " THEN R E T U R N

920 G O S U B 1000 : REM D E C O D E LINE

930 GOTO 910

46

1000 REM D E C O D E S T R I N G OF N I B B L E S IN N$ AT A D D R E S S AD

1010 IF LEN (N$) < >16 THEN P R I N T " I L L E G A L SPR DATA !": END

1020 FOR I =1 TO 16 STEP 2

1030 N =(ASC (MID$ (N$, I ,1)) - ASC (" @ ")) : REM HIGH NYB

1040 IF N <0 THEN N = TC : REM . IS T R A N S P A R E N T

1050 M =(ASC (MID$ (N$, I +1 ,1)) - ASC (" @ ")) : REM LOW NYB

1060 IF M <0 THEN M = TC : REM . IS T R A N S P A R E N T

1070 POKE AD ,(N AND 1 5) * 1 6 + (M AND 15): REM SET 2 P I X E L S

1080 AD = AD +1 : REM A D V A N C E AD

1090 NEXT I

1100 R E T U R N

1998 REM S P R I T E DATA

1999 REM . = T R A N S P A R E N T , @ - O = C O L O U R S 0 TO 15

2000 DATA ".. AAFF ... HHCC ..."

2010 DATA ". AAFF HHCC .."

2020 DATA " AAFF HHCC ."

2030 DATA " AFF ... @@@ ... HHC ."

2040 DATA " FF .. @ @ G G G @ @ .. HH ."

2050 DATA ".. @ @ G G G G G G G @ @ ..."

2060 DATA ". @ G G G G G G G G G G G @ .."

2070 DATA ". @ G G G G G G G G G G G @ .."

2080 DATA " @ G G G @ @ G G G @ @ G G G @ ."

2090 DATA " @ G G @ G G G G G G G @ G G @ ."

2100 DATA " @ G G G G G G G G G G G G G @ ."

2110 DATA " @ G G G G G B G B G G G G G @ ."

2120 DATA " @ G G G B B B B B B B G G G @ ."

2130 DATA ". @ G G G G B B B G G G G @ .."

2140 DATA ". @ G G G G G B G G G G G @ .."

2150 DATA ".. @ @ G G G G G G G @ @ ..."

2160 DATA " II .. @ @ G G G @ @ .. KK ."

2170 DATA " DII ... @@@ ... KKE ."

2180 DATA " DDII KKEE ."

2190 DATA ". DDII KKEE .."

2200 DATA ".. DDII ... KKEE ..."

2210 DATA " END "

47

VIC-III ERRATA LEVEL
There are a few cases where the VIC-III chip in the Commodore 65 prototypes that are
known to exist either do not behave as specified, the specification lacks detail and the
implementation is oddly inconsistent, or the design itself has flaws or inconsistencies.
The default behavior of the VIC-IV is to emulate the VIC-III as closely as possible in
these cases. In some cases where the VIC-III behavior is lacking, the VIC-IV provides
improved behaviors that can be selected by software using the HWERRATA register at
$D08F.

Because these fixes are backwards incompatible with the VIC-III and with earlier ver-
sions of the VIC-IV and the MEGA65 core, software must opt in to these fixes by
setting the HWERRATA register. This protects software from further changes that may
be introduced in future versions of the MEGA65 core. The boot state of this register is
$00, which requests full compatibility with the VIC-III, including buggy behaviors. The
MEGA65 ROM will always leave this set to $00 when launching programs. A program
can set HWERRATA to enable a set of fixes known to the developer at the time the pro-
gram is written, and exclude backwards incompatible fixes that might be introduced
in later versions.

Requesting an errata level enables all fixes up to that level. By design, there is no
way to request a level and exclude specific fixes at lower levels. You must write your
program to accommodate all fixes up to the requested level.

In cases where enabling a fix changes the behavior of a hot register, setting the errata
level does not trigger hot register propagation. The program must trigger hot register
propagation by writing a 1 to the HOTREG register.

The errata levels implemented so far are as follows:

VIC-III Errata Levels

Level Fixed behavior Release
introduced

0 No fixes. Fully VIC-III compatible. N/A
1 X scroll position shifted in H640 mode. The

VIC-III renders the text smooth scroll X position
($D016 XSCL) incorrectly in H640 mode. The
fix offsets the scroll position 1 logical pixel (2
physical pixels) to the right. This does not take
effect until hot register propagation.

v0.96

continued …

48

Level Fixed behavior Release
introduced

2 Character attribute combinations. When the
upper palette (”bold”) character attribute (bit
6) is set, the VIC-III has counterintuitive behav-
iors when ”blink” (bit 4) or ”reverse” (bit 5) are
also set: blink will toggle the upper palette at-
tribute and not blink the character, and reverse
has no effect. With this fix, upper palette + blink
will blink the character, and bold + reverse will
reverse the character, displayed with the upper
palette in both cases.

v0.96

3 SD Card Busy Flag behaviour. The SD card
busy flag (bit 1 of $D680) indicates if the low-
level SD card controller is busy. The addition
of the SD card controller read-ahead function-
ality means that older software that expectes
this bit to clear on completion of a read op-
eration will incorrectly wait for the entire read-
ahead sequence to complete. This may in turn
result in software incorrectly believing the sec-
tor read has failed due to the longer time re-
quired, or that another read request cannot be
immediately submitted. Therefore below this er-
rata level the SD card busy flag does not indi-
cate if the SD card controller is performing a
background sector read-ahead operation. At
or above this errata level this information is not
concealed, i.e., bit 0 will clear when the re-
quested sector is available, but bit 1 will remain
set while any read-ahead operation continues.

VIC-II / C64 REGISTERS
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D000 53248 S0X
D001 53249 S0Y
D002 53250 S1X
D003 53251 S1Y
D004 53252 S2X
D005 53253 S2Y
D006 53254 S3X

continued …

49

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D007 53255 S3Y
D008 53256 S4X
D009 53257 S4Y
D00A 53258 S5X
D00B 53259 S5Y
D00C 53260 S6X
D00D 53261 S6Y
D00E 53262 S7X
D00F 53263 S7Y
D010 53264 SXMSB
D011 53265 RC8 ECM BMM BLNK RSEL YSCL
D012 53266 RC
D013 53267 LPX
D014 53268 LPY
D015 53269 SE
D016 53270 – RST MCM CSEL XSCL
D017 53271 SEXY
D018 53272 VS CB –
D019 53273 – ILP ISSC ISBC RIRQ
D01A 53274 – MISSC MISBC MRIRQ
D01B 53275 BSP
D01C 53276 SCM
D01D 53277 SEXX
D01E 53278 SSC
D01F 53279 SBC
D020 53280 – BORDERCOL
D021 53281 – SCREENCOL
D022 53282 – MC1
D023 53283 – MC2
D024 53284 – MC3
D025 53285 SPRMC0
D026 53286 SPRMC1
D027 53287 SPR0COL
D028 53288 SPR1COL
D029 53289 SPR2COL
D02A 53290 SPR3COL
D02B 53291 SPR4COL
D02C 53292 SPR5COL
D02D 53293 SPR6COL
D02E 53294 SPR7COL

D030 53296 – C128-
FAST

50

• BLNK Enable display: 0 = blank the display, 1 = show the display

• BMM bitmap mode

• BORDERCOL display border colour (16 colour)

• BSP sprite background priority bits

• C128FAST 2MHz select (for C128 2MHz emulation)

• CB character set address location (× 1KiB)

• CSEL 38/40 column select

• ECM extended background mode

• ILP light pen indicate or acknowledge

• ISBC sprite:bitmap collision indicate or acknowledge

• ISSC sprite:sprite collision indicate or acknowledge

• LPX Coarse horizontal beam position (was lightpen X)

• LPY Coarse vertical beam position (was lightpen Y)

• MC1 multi-colour 1 (16 colour)

• MC2 multi-colour 2 (16 colour)

• MC3 multi-colour 3 (16 colour)

• MCM Multi-colour mode

• MISBC mask sprite:bitmap collision IRQ

• MISSC mask sprite:sprite collision IRQ

• MRIRQ mask raster IRQ

• RC raster compare bits 0 to 7

• RC8 raster compare bit 8

• RIRQ raster compare indicate or acknowledge

• RSEL 24/25 row select

• RST Disables video output on MAX Machine(tm) VIC-II 6566. Ignored on normal
C64s and the MEGA65

• SBC sprite/foreground collision indicate bits

• SCM sprite multicolour enable bits

• SCREENCOL screen colour (16 colour)

• SE sprite enable bits

• SEXX sprite horizontal expansion enable bits

51

• SEXY sprite vertical expansion enable bits

• SNX sprite N horizontal position

• SNY sprite N vertical position

• SPRMC0 Sprite multi-colour 0

• SPRMC1 Sprite multi-colour 1

• SPRNCOL sprite N colour / 16-colour sprite transparency colour (lower nybl)

• SSC sprite/sprite collision indicate bits

• SXMSB sprite horizontal position MSBs

• VS screen address (× 1KiB)

• XSCL horizontal smooth scroll

• YSCL 24/25 vertical smooth scroll

VIC-III / C65 REGISTERS
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D020 53280 BORDERCOL
D021 53281 SCREENCOL
D022 53282 MC1
D023 53283 MC2
D024 53284 MC3
D025 53285 SPRMC0
D026 53286 SPRMC1
D02F 53295 KEY
D030 53296 ROME CROM9 ROMC ROMA ROM8 PAL EXTSYNC CRAM2K
D031 53297 H640 FAST ATTR BPM V400 H1280 MONO INT
D033 53299 B0ADODD – B0ADEVN –
D034 53300 B1ADODD – B1ADEVN –
D035 53301 B2ADODD – B2ADEVN –
D036 53302 B3ADODD – B3ADEVN –
D037 53303 B4ADODD – B4ADEVN –
D038 53304 B5ADODD – B5ADEVN –
D039 53305 B6ADODD – B6ADEVN –
D03A 53306 B7ADODD – B7ADEVN –
D03B 53307 BPCOMP
D03C 53308 BPX
D03D 53309 BPY
D03E 53310 HPOS

continued …

52

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D03F 53311 VPOS
D040 53312 B0PIX
D041 53313 B1PIX
D042 53314 B2PIX
D043 53315 B3PIX
D044 53316 B4PIX
D045 53317 B5PIX
D046 53318 B6PIX
D047 53319 B7PIX
D100 –
D1FF

53504 –
53759 PALRED

D200 –
D2FF

53760 –
54015 PALGREEN

D300 –
D3FF

54016 –
54271 PALBLUE

• ATTR Enable extended attributes and 8 bit colour entries

• BNPIX Display Address Translater (DAT) Bitplane N port

• BORDERCOL display border colour (256 colour)

• BPCOMP Complement bitplane flags

• BPM Bit-Plane Mode

• BPX Bitplane X

• BPY Bitplane Y

• BXADEVN Bitplane X address, even lines

• BXADODD Bitplane X address, odd lines

• CRAM2K Map 2nd KB of colour RAM $DC00-$DFFF

• CROM9 Select between C64 and C65 charset.

• EXTSYNC Enable external video sync (genlock input)

• FAST Enable C65 FAST mode (∼3.5MHz)

• H1280 Enable 1280 horizontal pixels (not implemented)

• H640 Enable C64 640 horizontal pixels / 80 column mode

• HPOS Bitplane X Offset

• INT Enable VIC-III interlaced mode

• KEY Write $A5 then $96 to enable C65/VIC-III IO registers

53

• MC1 multi-colour 1 (256 colour)

• MC2 multi-colour 2 (256 colour)

• MC3 multi-colour 3 (256 colour)

• MONO Enable VIC-III MONO composite video output (colour if disabled)

• PAL Use PALETTE ROM (0) or RAM (1) entries for colours 0 - 15

• PALBLUE blue palette values (reversed nybl order)

• PALGREEN green palette values (reversed nybl order)

• PALRED red palette values (reversed nybl order)

• ROM8 Map C65 ROM $8000

• ROMA Map C65 ROM $A000

• ROMC Map C65 ROM $C000

• ROME Map C65 ROM $E000

• SCREENCOL screen colour (256 colour)

• SPRMC0 Sprite multi-colour 0 (8-bit for selection of any palette colour)

• SPRMC1 Sprite multi-colour 1 (8-bit for selection of any palette colour)

• V400 Enable 400 vertical pixels

• VPOS Bitplane Y Offset

VIC-IV / MEGA65 SPECIFIC
REGISTERS

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D020 53280 BORDERCOL
D021 53281 SCREENCOL
D022 53282 MC1
D023 53283 MC2
D024 53284 MC3
D025 53285 SPRMC0
D026 53286 SPRMC1
D02F 53295 KEY
D048 53320 TBDRPOS
D049 53321 SPRBPMEN TBDRPOS
D04A 53322 BBDRPOS

continued …

54

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D04B 53323 SPRBPMEN BBDRPOS
D04C 53324 TEXTXPOS
D04D 53325 SPRTILEN TEXTXPOS
D04E 53326 TEXTYPOS
D04F 53327 SPRTILEN TEXTYPOS
D050 53328 XPOSLSB
D051 53329 NORRDEL DBLRR XPOSMSB
D052 53330 FNRASTERLSB

D053 53331 FNRST SHDEMU UPSCALE RE-
SERVED – FNRASTERMSB

D054 53332 ALPHEN VFAST PALEMU SPRH640 SMTH FCLRHI FCLRLO CHR16
D055 53333 SPRHGTEN
D056 53334 SPRHGHT
D057 53335 SPRX64EN
D058 53336 LINESTEPLSB
D059 53337 LINESTEPMSB
D05A 53338 CHRXSCL
D05B 53339 CHRYSCL
D05C 53340 SDBDRWDLSB
D05D 53341 HOTREG RSTDELEN SDBDRWDMSB
D05E 53342 CHRCOUNT
D05F 53343 SPRXSMSBS
D060 53344 SCRNPTRLSB
D061 53345 SCRNPTRMSB
D062 53346 SCRNPTRBNK

D063 53347 EXGLYPH FCOLMCM CHRCOUNT SCRNPTRMB

D064 53348 COLPTRLSB
D065 53349 COLPTRMSB
D068 53352 CHARPTRLSB
D069 53353 CHARPTRMSB
D06A 53354 CHARPTRBNK
D06B 53355 SPR16EN
D06C 53356 SPRPTRADRLSB
D06D 53357 SPRPTRADRMSB
D06E 53358 SPRPTR16 SPRPTRBNK
D06F 53359 PALNTSC VGAHDTV RASLINE0
D070 53360 MAPEDPAL BTPALSEL SPRPALSEL ABTPALSEL
D071 53361 BP16ENS
D072 53362 SPRYADJ
D073 53363 RASTERHEIGHT ALPHADELAY
D074 53364 SPRENALPHA

continued …

55

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D075 53365 SPRALPHAVAL
D076 53366 SPRENV400
D077 53367 SPRYMSBS
D078 53368 SPRYSMSBS
D079 53369 RASCMP

D07A 53370 FNRST-
CMP EXTIRQS NOBUG-

COMPAT CHARY16 SPTR-
CONT RASCMPMSB

D07B 53371 DISPROWS
D07C 53372 DEBUGC VSYNCP HSYNCP RESV BITPBANK

• ABTPALSEL VIC-IV bitmap/text palette bank (alternate palette)

• ALPHADELAY Alpha delay for compositor

• ALPHEN Alpha compositor enable

• BBDRPOS bottom border position

• BITPBANK Set which 128KB bank bitplanes

• BORDERCOL display border colour (256 colour)

• BP16ENS VIC-IV 16-colour bitplane enable flags

• BTPALSEL bitmap/text palette bank

• CHARPTRBNK Character set precise base address (bits 23 - 16)

• CHARPTRLSB Character set precise base address (bits 0 - 7)

• CHARPTRMSB Character set precise base address (bits 15 - 8)

• CHARY16 Alternate char ROM bank on alternate raster lines in V200

• CHR16 enable 16-bit character numbers (two screen bytes per character)

• CHRCOUNT Number of characters to display per row (LSB)

• CHRXSCL Horizontal hardware scale of text mode (pixel 120ths per pixel)

• CHRYSCL Vertical scaling of text mode (number of physical rasters per char text
row)

• COLPTRLSB colour RAM base address (bits 0 - 7)

• COLPTRMSB colour RAM base address (bits 15 - 8)

• DBLRR When set, the Raster Rewrite Buffer is only updated every 2nd raster line,
limiting resolution to V200, but allowing more cycles for Raster-Rewrite actions.

• DEBUGC VIC-IV debug pixel select red(01), green(10) or blue(11) channel vis-
ible in $D07D

56

• DISPROWS Number of text rows to display

• EXGLYPH source full-colour character data from expansion RAM

• EXTIRQS Enable additional IRQ sources, e.g., raster X position.

• FCLRHI enable full-colour mode for character numbers >$FF

• FCLRLO enable full-colour mode for character numbers <=$FF

• FCOLMCM enable 256 colours in multicolour text mode

• FNRASTERLSB Read physical raster position

• FNRASTERMSB Read physical raster position

• FNRST Read raster compare source (0=VIC-IV fine raster, 1=VIC-II raster), pro-
vides same value as set in FNRSTCMP

• FNRSTCMP Raster compare is in physical rasters if clear, or VIC-II rasters if set

• HOTREG Enable VIC-II hot registers. When enabled, touching many VIC-II reg-
isters causes the VIC-IV to recalculate display parameters, such as border po-
sitions and sizes. Touching registers while this is disabled will trigger a change
when reenabling. Setting this to 0 will clear the recalc flag, canceling the re-
calculation.

• HSYNCP hsync polarity

• KEY Write $47 then $53 to enable C65GS/VIC-IV IO registers

• LINESTEPLSB number of bytes to advance between each text row (LSB)

• LINESTEPMSB number of bytes to advance between each text row (MSB)

• MAPEDPAL palette bank mapped at $D100-$D3FF

• MC1 multi-colour 1 (256 colour)

• MC2 multi-colour 2 (256 colour)

• MC3 multi-colour 3 (256 colour)

• NOBUGCOMPAT Disables VIC-III / C65 Bug Compatibility Mode if set

• NORRDEL When clear, raster rewrite double buffering is used

• PALEMU Enable PAL CRT-like scan-line emulation

• PALNTSC NTSC emulation mode (max raster = 262)

• RASCMP Physical raster compare value to be used if FNRSTCMP is clear

• RASCMPMSB Raster compare value MSB

• RASLINE0 first VIC-II raster line

• RASTERHEIGHT physical rasters per VIC-II raster (1 to 16)

57

• RESERVED Reserved

• RSTDELEN Enable raster delay (delays raster counter and interrupts by one line
to match output pipeline latency)

• SCREENCOL screen colour (256 colour)

• SCRNPTRBNK screen RAM precise base address (bits 23 - 16)

• SCRNPTRLSB screen RAM precise base address (bits 0 - 7)

• SCRNPTRMB screen RAM precise base address (bits 31 - 24)

• SCRNPTRMSB screen RAM precise base address (bits 15 - 8)

• SDBDRWDLSB Width of single side border (LSB)

• SDBDRWDMSB side border width (MSB)

• SHDEMU Enable simulated shadow-mask (PALEMU must also be enabled)

• SMTH video output horizontal smoothing enable

• SPR16EN sprite 16-colour mode enables

• SPRALPHAVAL Sprite alpha-blend value

• SPRBPMEN Sprite bitplane-modify-mode enables

• SPRENALPHA Sprite alpha-blend enable

• SPRENV400 Sprite V400 enables

• SPRH640 Sprite H640 enable

• SPRHGHT Sprite extended height size (sprite pixels high)

• SPRHGTEN sprite extended height enable (one bit per sprite)

• SPRMC0 Sprite multi-colour 0 (8-bit for selection of any palette colour)

• SPRMC1 Sprite multi-colour 1 (8-bit for selection of any palette colour)

• SPRPALSEL sprite palette bank

• SPRPTR16 16-bit sprite pointer mode (allows sprites to be located on any 64
byte boundary in chip RAM)

• SPRPTRADRLSB sprite pointer address (bits 7 - 0)

• SPRPTRADRMSB sprite pointer address (bits 15 - 8)

• SPRPTRBNK sprite pointer address (bits 23 - 16)

• SPRTILEN Sprite horizontal tile enables.

• SPRX64EN Sprite extended width enables (8 bytes per sprite row = 64 pixels
wide for normal sprites or 16 pixels wide for 16-colour sprite mode)

58

• SPRXSMSBS Sprite H640 X Super-MSBs

• SPRYADJ Sprite Y position adjustment

• SPRYMSBS Sprite V400 Y position MSBs

• SPRYSMSBS Sprite V400 Y position super MSBs

• SPTRCONT Continuously monitor sprite pointer, to allow changing sprite data
source while a sprite is being drawn

• TBDRPOS top border position

• TEXTXPOS character generator horizontal position

• TEXTYPOS Character generator vertical position

• UPSCALE Enable integrated low-latency (130usec) 720p upscaler

• VFAST C65GS FAST mode (48MHz)

• VGAHDTV Select more VGA-compatible mode if set, instead of HDMI/HDTV
VIC-II cycle-exact frame timing. May help to produce a functional display on
older VGA monitors.

• VSYNCP vsync polarity

• XPOSLSB Read horizontal raster scan position LSB

• XPOSMSB Read horizontal raster scan position MSB

59

60

CHAPTER 3
Sound Interface Device (SID)
• SID Registers

62

SID REGISTERS
The MEGA65 has 4 SIDs build in, which can be access through the register ranges
starting at $D400, $D420, $D440, and $D460. The registers in each of these ranges
are exactly the same, so the following table only lists the first SID. Add 32 the get to
the next SID respectively.

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D400 54272 VOICE1FRQLO
D401 54273 VOICE1FRQHI
D402 54274 VOICE1PWLO
D403 54275 VOICE1UNSD VOICE1PWHI

D404 54276 VOICE1-
CTRLRNW

VOICE1-
CTRLPUL

VOICE1-
CTRLSAW

VOICE1-
CTRLTRI

VOICE1-
CTRLTST

VOICE1-
CTRLRMO

VOICE1-
CTRLRMF

VOICE1-
CTRLGATE

D405 54277 ENV1ATTDUR ENV1DECDUR
D406 54278 ENV1SUSDUR ENV1RELDUR
D407 54279 VOICE2FRQLO
D408 54280 VOICE2FRQHI
D409 54281 VOICE2PWLO
D40A 54282 VOICE2UNSD VOICE2PWHI

D40B 54283 VOICE2-
CTRLRNW

VOICE2-
CTRLPUL

VOICE2-
CTRLSAW

VOICE2-
CTRLTRI

VOICE2-
CTRLTST

VOICE2-
CTRLRMO

VOICE2-
CTRLRMF

VOICE2-
CTRLGATE

D40C 54284 ENV2ATTDUR ENV2DECDUR
D40D 54285 ENV2SUSDUR ENV2RELDUR
D40E 54286 VOICE3FRQLO
D40F 54287 VOICE3FRQHI
D410 54288 VOICE3PWLO
D411 54289 VOICE3UNSD VOICE3PWHI

D412 54290 VOICE3-
CTRLRNW

VOICE3-
CTRLPUL

VOICE3-
CTRLSAW

VOICE3-
CTRLTRI

VOICE3-
CTRLTST

VOICE3-
CTRLRMO

VOICE3-
CTRLRMF

VOICE3-
CTRLGATE

D413 54291 ENV3ATTDUR ENV3DECDUR
D414 54292 ENV3SUSDUR ENV3RELDUR
D415 54293 FLTRCUTFRQLO
D416 54294 FLTRCUTFRQHI

D417 54295 FLTRRESON FLTR-
EXTINP

FLTR-
V1OUT

FLTR-
V2OUT

FLTR-
V3OUT

D418 54296 FLTR-
CUTV3

FLTR-
HIPASS

FLTR-
BDPASS

FLTR-
LOPASS FLTRVOL

D419 54297 PADDLE1
D41A 54298 PADDLE2
D41B 54299 OSC3RNG
D41C 54300 ENV3OUT
D63C 54844 – SIDMODE

• ENV3OUT Envelope Generator 3 Output

63

• ENVXATTDUR Envelope Generator X Attack Cycle Duration

• ENVXDECDUR Envelope Generator X Decay Cycle Duration

• ENVXRELDUR Envelope Generator X Release Cycle Duration

• ENVXSUSDUR Envelope Generator X Sustain Cycle Duration

• FLTRBDPASS Filter Band-Pass Mode

• FLTRCUTFRQHI Filter Cutoff Frequency High

• FLTRCUTFRQLO Filter Cutoff Frequency Low

• FLTRCUTV3 Filter Cut-Off Voice 3 Output (1 = off)

• FLTREXTINP Filter External Input

• FLTRHIPASS Filter High-Pass Mode

• FLTRLOPASS Filter Low-Pass Mode

• FLTRRESON Filter Resonance

• FLTRVOL Filter Output Volume

• FLTRVXOUT Filter Voice X Output

• OSC3RNG Oscillator 3 Random Number Generator

• PADDLE1 Analog/Digital Converter: Game Paddle 1 (0-255)

• PADDLE2 Analog/Digital Converter Game Paddle 2 (0-255)

• SIDMODE Select SID mode: 0=6581, 1=8580

• VOICE1CTRLRMF Voice 1 Synchronize Osc. 1 with Osc. 3 Frequency

• VOICE1CTRLRMO Voice 1 Ring Modulate Osc. 1 with Osc. 3 Output

• VOICE2CTRLRMF Voice 2 Synchronize Osc. 2 with Osc. 1 Frequency

• VOICE2CTRLRMO Voice 2 Ring Modulate Osc. 2 with Osc. 1 Output

• VOICE3CTRLRMF Voice 3 Synchronize Osc. 3 with Osc. 2 Frequency

• VOICE3CTRLRMO Voice 3 Ring Modulate Osc. 3 with Osc. 2 Output

• VOICEXCTRLGATE Voice X Gate Bit (1 = Start, 0 = Release)

• VOICEXCTRLPUL Voice X Pulse Waveform

• VOICEXCTRLRNW Voice X Control Random Noise Waveform

• VOICEXCTRLSAW Voice X Sawtooth Waveform

• VOICEXCTRLTRI Voice X Triangle Waveform

• VOICEXCTRLTST Voice X Test Bit - Disable Oscillator

64

• VOICEXFRQHI Voice X Frequency High

• VOICEXFRQLO Voice X Frequency Low

• VOICEXPWHI Voice X Pulse Waveform Width High

• VOICEXPWLO Voice X Pulse Waveform Width Low

• VOICEXUNSD Unused

65

66

CHAPTER 4
F018-Compatible Direct
Memory Access (DMA)

Controller
• F018A/B DMA Jobs

• MEGA65 Enhanced DMA Jobs

• Texture Scaling and Line Drawing

• Inline DMA Lists

• Audio DMA

• F018 “DMAgic” DMA Controller

• MEGA65 DMA Controller Extensions

• Unimplemented Functionality

68

The MEGA65 includes an F018/F018A backward-compatible DMA controller. Unlike
in theC65, where the DMA controller exists as a separate chip, it is part of the 45GS02
processor in the MEGA65. However, as the use of the DMA controller is a logically
separate topic, it is documented separately in this appendix.

The MEGA65’s DMA controller provides several important improvements over the
F018/F018A DMAgic chips of the C65:

• Speed The MEGA65 performs DMA operations at 40MHz, allowing filling 40MB
or copying 20MB per second. For example, it is possible to copy a complete 8KB
C64-style bitmap display in about 200 micro-seconds, equivalent to less than
four raster lines!

• Large Memory Access The MEGA65’s DMA controller allows access to all
256MB of address space.

• Texture Copying Support The MEGA65’s DMA controller can do fractional ad-
dress calculations to support hardware texture scaling, as well as address strid-
ing, to make it possible in principle to simultaneously scale-and-draw a texture
frommemory to the screen. This would be useful, should anyone be crazy enough
to try to implement a Wolfenstein or Doom style-game on the MEGA65.

• Transparency/MaskValue Support The MEGA65’s DMA controller can be told
to ignore a special value when copying memory, leaving the destination memory
contents unchanged. This allows masking of transparent regions when perform-
ing a DMA copy, which considerably simplifies blitting of graphics shapes.

• Per-Job Option List A number of options can be configured for each job in a
chained list of DMA jobs, for example, selecting F018 or F018B mode, changing
the transparency value, fractional address stepping or the source or destination
memory region.

• Background Audio DMA The MEGA65 includes background audio DMA capa-
bilities similar to the Amiga™ series of computers. Key differences are that the
MEGA65 can use either 8 or 16-bit samples, supports very high sample rates
up to approximately 1 MHz, has 256 volume settings per channel, and no inter-
channel modulation.

F018A/B DMA JOBS
To execute a DMA job using the F018 series of DMA controllers, you must construct
the list of DMA jobs in memory, and then write the address of this list into the DMA ad-
dress registers. The DMA job will execute when you write to the ADDRLSBTRIG register
($D700). For this reason you must write the MSB and bank number of the DMA list int0
$D701 and $D702 first, and the LSB only after having set these other two registers. If
you wish to execute multiple DMA jobs using the same list structure in memory, you can
simply write to ADDRLSBTRIG again after updating the list contents – provided that no
other program has modified the contents of $D701 or $D702. Note that BASIC 65

69

uses the DMA controller to scroll the screen, so it is usually safest to always write to all
three registers.

When ADDRLSBTRIG has been written to, the DMA job completes immediately. Unlike
on the C65, the DMA controller is part of the processor of the MEGA65. This means
that the processor stops trying to execute instructions until the DMA job has completed.
The only exception to this, is that Audio DMA continues, and will steal cycles from any
other DMA activity, to ensure that audio playback is not affected.

This behaviour means that unlike on the C65, DMA jobs cannot be interrupted. If your
program has sensitive timing requirements, you may need to break larger DMA jobs into
several smaller jobs. This is somewhat mitigated by the high speed of the MEGA65’s
DMA, which is able to fill memory at 40.5MB per second and copy memory at 20.25MB
per second, compared with circa 3.5MB and 1.7MB per second on a C65. This allows
larger DMA jobs to be executed, without needing to worry about the impact on real-
time elements of a program. For example, it is possible to fill an 80 column 50 row
text screen using the MEGA65’s DMA controller in just 200 microseconds.

F018 DMA Job List Format

The MEGA65’s DMA controller supports the two different DMA job list formats used by
the original F018 part that was used in the earlier C65 prototypes (upto Revision 2B)
and the F018B and later revisions used in the Revision 3 – 5 C65 prototypes. The main
difference is the addition of a second command byte, as the following tables show:

It is important to know which style the DMA controller is expecting. The MEGA65’s
Hypervisor sets the mode based on the detected version of C65 ROM, if one is running.
If it is an older one, then the F018 style is expected, otherwise the newer F018B style
is expected. You can check which style has been selected by querying bit 0 of $D703:
If it is a 1, then the newer F018B 12 byte list format is expected. If it is a 0, then the
older F018 11 byte list format is expected. The expected style can be set by writing
to this register.

Unless you are writing software that must also run on a C65 prototype, you should
most probably use the MEGA65’s Enhanced DMA Jobs, where the list format is ex-
plicitly specified in the list itself. As the Enhanced DMA Jobs are an extension of the
F018/F018B DMA jobs, you should still read the following, unless you are already
familiar with the behaviour of the F018 DMA controller.

70

F018 11 byte DMA List Structure

Offset Contents
$00 Command LSB
$01 Count LSB
$02 Count MSB
$03 Source Address LSB
$04 Source Address MSB
$05 Source Address BANK and FLAGS
$06 Destination Address LSB
$07 Destination Address MSB
$08 Destination Address BANK and FLAGS
$09 Modulo LSB
$0a Modulo MSB

* The Command MSB is $00 when using this list format.

F018B 12 byte DMA List Structure

Offset Contents
$00 Command LSB
$01 Count LSB
$02 Count MSB
$03 Source Address LSB
$04 Source Address MSB
$05 Source Address BANK and FLAGS
$06 Destination Address LSB
$07 Destination Address MSB
$08 Destination Address BANK and FLAGS
$09 Command MSB
$0a Modulo LSB / Mode
$0b Modulo MSB / Mode

The structure of the command word is as follows:

Bit(s) Contents
0 – 1 DMA Operation Type
2 Chain (i.e., another DMA list follows)
3 Yield to interrupts
4 MINTERM -SA,-DA bit
5 MINTERM -SA,DA bit
6 MINTERM SA,-DA bit
7 MINTERM SA,DA bit

8 – 9 Addressing mode of source
10 – 11 Addressing mode of destination
12 – 15 RESESRVED. Always set to 0’s

The command field take the following four values:

71

Value Contents
%00 (0) Copy
%01 (1) Mix (via MINTERMs)
%10 (2) Swap
%11 (3) Fill
* Only Copy and Fill are implemented at the time of writing.

The addressing mode fields take the following four values:

Value Contents
%00 (0) Linear (normal) addressing
%01 (1) Modulo (rectangular) addressing
%10 (2) Hold (constant address)
%11 (3) XY MOD (bitmap rectangular) addressing
* Only Linear, Modulo and Hold are implemented at the time of
writing.

The BANK and FLAGS field for the source address allow selection of addresses within
a 1MB address space. To access memory beyond the first 1MB, it is necessary to use
an Enhanced DMA Job with the appropriate option bytes to select the source and/or
destination MB of memory. The BANK and FLAGS field has the following structure:

Bit(s) Contents
0 – 3 Memory BANK within the selected MB
4 HOLD, i.e., do not change the address
5 MODULO, i.e., apply the MODULO field to wrap-

around within a limited memory space
6 DIRECTION. If set, then the address is decremented

instead of incremented.
7 I/O. If set, then I/O registers are visible during the

DMA controller at $D000 – $DFFF.

Performing Simple DMA Operations

For information on using the DMA controller from BASIC 65, refer to the DMA BASIC
command in the MEGA65 Book, DMA (subsection B).

To use the DMA controller from assembly language, set up a data structure with the
DMA list, and then set $D702 – $D700 to the address of the list. For example, to clear
the screen in C65-mode by filling it with spaces, the following routine could be used:

72

LDA # $00 ; DMA list e x i s t s in BANK 0

STA $ D 7 0 2

LDA # > d m a l i s t ; Set MSB of DMA list a d d r e s s

STA $ D 7 0 1

LDA # < d m a l i s t ; Set LSB of DMA list address , and e x e c u t e DMA

STA $ D 7 0 0

RTS

d m a l i s t :

. byte $03 ; C o m m a n d low byte : FILL

. word 2000 ; C o u n t : 80 x25 = 2000 b y t e s

. word $ 0 0 2 0 ; Fill with v a l u e $20

. byte $00 ; S o u r c e bank (i g n o r e d with FILL o p e r a t i o n)

. word $ 0 8 0 0 ; D e s t i n a t i o n a d d r e s s w h e r e s c r e e n l i v e s

. byte $00 ; S c r e e n is in bank 0

. byte $00 ; C o m m a n d high byte

. word $ 0 0 0 0 ; M o d u l o (i g n o r e d due to s e l e c t e d c o m m m a n d)

It is also possible to execute more than one DMA job at the same time, by setting the
CHAIN bit in the low byte of the command word. For example to clear the screen as
above, and also clear the colour RAM for the screen, you could use something like:

73

LDA # $00 ; DMA list e x i s t s in BANK 0

STA $ D 7 0 2

LDA # > d m a l i s t ; Set MSB of DMA list a d d r e s s

STA $ D 7 0 1

LDA # < d m a l i s t ; Set LSB of DMA list address , and e x e c u t e DMA

STA $ D 7 0 0

RTS

d m a l i s t :

. byte $07 ; C o m m a n d low byte : FILL + C H A I N

. word 2000 ; C o u n t : 80 x25 = 2000 b y t e s

. word $ 0 0 2 0 ; Fill with v a l u e $20

. byte $00 ; S o u r c e bank (i g n o r e d with FILL o p e r a t i o n)

. word $ 0 8 0 0 ; D e s t i n a t i o n a d d r e s s w h e r e s c r e e n l i v e s

. byte $00 ; S c r e e n is in bank 0

. byte $00 ; C o m m a n d high byte

. word $ 0 0 0 0 ; M o d u l o (i g n o r e d due to s e l e c t e d c o m m m a n d)

; S e c o n d DMA job i m m e d i a t e l y f o l l o w s the f i r s t

. byte $03 ; C o m m a n d low byte : FILL

. word 2000 ; C o u n t : 80 x25 = 2000 b y t e s

. word $ 0 0 0 1 ; Fill with v a l u e $01 = w h i t e

. byte $00 ; S o u r c e bank (i g n o r e d with FILL o p e r a t i o n)

. word $ F 8 0 0 ; D e s t i n a t i o n a d d r e s s w h e r e c o l o u r RAM l i v e s

. byte $01 ; c o l o u r RAM is in bank 1 ($1F800 - $ 1 F F F F)

. byte $00 ; C o m m a n d high byte

. word $ 0 0 0 0 ; M o d u l o (i g n o r e d due to s e l e c t e d c o m m m a n d)

Copying memory is very similar to filling memory, except that the command low byte
must be modified, and the source address field must be correctly initialised. For ex-
ample, to copy the character set from where it lives in the ROM at $2D000 – $2DFFF
to $5000, you could use something like:

74

LDA # $00 ; DMA list e x i s t s in BANK 0

STA $ D 7 0 2

LDA # > d m a l i s t ; Set MSB of DMA list a d d r e s s

STA $ D 7 0 1

LDA # < d m a l i s t ; Set LSB of DMA list address , and e x e c u t e DMA

STA $ D 7 0 0

RTS

d m a l i s t :

. byte $00 ; C o m m a n d low byte : COPY

. word $ 1 0 0 0 ; C o u n t : 4 KB = 4096

. word $ D 0 0 0 ; Copy from $ x D 0 0 0

. byte $02 ; S o u r c e bank = $02 for $ 2 x x x x

. word $ 5 0 0 0 ; D e s t i n a t i o n a d d r e s s w h e r e s c r e e n l i v e s

. byte $00 ; S c r e e n is in bank 0

. byte $00 ; C o m m a n d high byte

. word $ 0 0 0 0 ; M o d u l o (i g n o r e d due to s e l e c t e d c o m m m a n d)

It is also possible to perform a DMA operation from BASIC 2 in C64 mode by POKEing
the necessary values, after first making sure that MEGA65 or C65 I/O mode has been
selected by writing the appropriate values to $D02F (53295). For example, to clear
the screen in C64 BASIC 2 using the DMA controller, you could use something like:

10 rem enable mega65 I/O

20 poke53295,asc("g"):poke53295,asc("s")

30 rem dma list in data statements

40 data 3: rem command lsb = fill

50 data 232,3 : rem screen is 1000 bytes = 3*256+232

60 data 32,0: rem fill with space = 32

70 data 0: rem source bank (unused for fill)

80 data 0,4: rem screen address = 1024 = 4*256

90 data 0: rem screen lives in bank 0

100 data 0: rem command high byte

110 data 0,0: rem modulo (unused in this job)

120 rem put dma list at $c000 = 49152

130 fori=0to11:reada:poke49152+i,a:next

140 rem execute job

150 poke55042,0: rem dma list is in bank 0

160 poke55041,192: rem dma list is in $c0xx

170 poke55040,0: rem dma list is in $xx00, and execute

While this is rather cumbersome to do each time, if you wanted to clear the screen
again, all you would need to do would be to POKE 55040,0 again, assuming that the
DMA list and DMA controller registers had not been modified since the previous time
the DMA job had been run.

75

The HOLD, I/O and other options can also be used to create interesting effects. For
example, to write a new value to the screen background colour very quickly, you could
copy a region of memory to $D021, with the I/O flag set to make the I/O register
visible for writing in the DMA job, and the HOLD flag set, so that the same address gets
written to repeatedly. This will write to the background colour at a rate of 20.5MHz,
which is almost as fast as the video pixel clock (27MHz). Thus we can change the
colour almost every pixel.

With a little care, we can make this routine such that it takes exactly one raster-line to
run, and thus draw vertical raster bars, or to create a kind of frankenstein video mode
that uses a linear memory layout – at the cost of consuming all of the processor’s time
during the active part of the display.

The following example does this to draw vertical raster bars on the screen. This pro-
gram assumes that the MEGA65 is set to PAL. For NTSC, the size of the DMA transfer
would need to be decreased a little. The other thing to note with this program, is that
it uses MEGA65 Enhanced DMA Job option $81 to set the destination megabyte in
memory to $FFxxxxx, and the bank is set to $D, and the destination address to $0021,
to form the complete address $FFD0021. This is the true location of the VIC-IV’s
border colour register. The program is written using ACME-compatible syntax.

76

b a s i c h e a d e r :

^^ I ;; 2020 SYS 2061

^^ I ! word $80a , 2 0 2 0

^^ I ! byte $9e , $32 , $30 , $36 , $31 ,0 ,0 ,0

^^ I ;; A c t u a l code b e g i n i n g at $ 0 8 0 d = 2061

main :

^^ Isei

^^ Ilda # $47 ^^ I ; e n a b l e M E G A 6 5 I / O

^^ Ista $ D 0 2 f

^^ Ilda # $53

^^ Ista $ d 0 2 f

^^ Ilda #65 ^^ I ^^ I ; Set CPU s p e e d to fast

^^ Ista 0

^^ Ilda #0 ^^ I ; d i s a b l e s c r e e n to show only the b o r d e r

^^ Ista $ d 0 1 1

^^ Ilda $ d 0 1 2 ^^ I ; Wait u n t i l s t a r t of the next r a s t e r

r a s t e r _ s y n c :^^ I ^^ I ^^ I ; b e f o r e b e g i n n i n g loop for h o r i z o n t a l a l i g n m e n t

^^ Icmp $ d 0 1 2

^^ Ibeq r a s t e r _ s y n c

^^ I ;; The f o l l o w i n g loop t a k e s e x a c t l y one r a s t e r line at 40.5 MHz in PAL

loop :

^^ Ijsr t r i g g e r d m a

^^ Ijmp loop

t r i g g e r d m a :

^^ Ilda #0^^ I ^^ I ^^ I ; make sure F018 list f o r m a t

^^ Ista $ d 7 0 3

^^ Ilda #0 ^^ I ^^ I ; dma list bank

^^ Ista $ d 7 0 2

^^ Ilda # > r a s t e r d m a l i s t

^^ Ista $ d 7 0 1

^^ Ilda # < r a s t e r d m a l i s t

^^ Ista $ d 7 0 5

^^ Irts

77

r a s t e r d m a l i s t :

^^ I ! byte $81 , $ff , $00

^^ I ! byte $00 ^^ I ^^ I ; COPY

^^ I ! word 619 ^^ I ^^ I ; DMA t r a n s f e r is 619 b y t e s long

^^ I ! word r a s t e r c o l o u r s ^^ I ; s o u r c e a d d r e s s

^^ I ! byte $00 ; s o u r c e bank

^^ I ! word $ 0 0 2 0 ^^ I ^^ I ; d e s t i n a t i o n a d d r e s s

^^ I ! byte $1d ; d e s t i n a t i o n bank + HOLD

^^ I ;; u n u s e d m o d u l o f i e l d

^^ I ! word $ 0 0 0 0

r a s t e r c o l o u r s :

^^ I ! byte 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,11 ,11 ,11 ,12 ,12 ,12 ,15 ,15 ,15 ,1 ,1 ,1 ,15 ,15 ,15 ,12 ,12 ,12 ,11 ,11 ,11 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,6 ,6 ,6 ,4 ,4 ,4 ,14 ,14 ,14 ,3 ,3 ,3 ,1 ,1 ,1 ,3 ,3 ,3 ,14 ,14 ,14 ,4 ,4 ,4 ,6 ,6 ,6 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,11 ,11 ,11 ,12 ,12 ,12 ,15 ,15 ,15 ,1 ,1 ,1 ,15 ,15 ,15 ,12 ,12 ,12 ,11 ,11 ,11 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,6 ,6 ,6 ,4 ,4 ,4 ,14 ,14 ,14 ,3 ,3 ,3 ,1 ,1 ,1 ,3 ,3 ,3 ,14 ,14 ,14 ,4 ,4 ,4 ,6 ,6 ,6 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,11 ,11 ,11 ,12 ,12 ,12 ,15 ,15 ,15 ,1 ,1 ,1 ,15 ,15 ,15 ,12 ,12 ,12 ,11 ,11 ,11 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,6 ,6 ,6 ,4 ,4 ,4 ,14 ,14 ,14 ,3 ,3 ,3 ,1 ,1 ,1 ,3 ,3 ,3 ,14 ,14 ,14 ,4 ,4 ,4 ,6 ,6 ,6 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,11 ,11 ,11 ,12 ,12 ,12 ,15 ,15 ,15 ,1 ,1 ,1 ,15 ,15 ,15 ,12 ,12 ,12 ,11 ,11 ,11 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,6 ,6 ,6 ,4 ,4 ,4 ,14 ,14 ,14 ,3 ,3 ,3 ,1 ,1 ,1 ,3 ,3 ,3 ,14 ,14 ,14 ,4 ,4 ,4 ,6 ,6 ,6 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,11 ,11 ,11 ,12 ,12 ,12 ,15 ,15 ,15 ,1 ,1 ,1 ,15 ,15 ,15 ,12 ,12 ,12 ,11 ,11 ,11 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,6 ,6 ,6 ,4 ,4 ,4 ,14 ,14 ,14 ,3 ,3 ,3 ,1 ,1 ,1 ,3 ,3 ,3 ,14 ,14 ,14 ,4 ,4 ,4 ,6 ,6 ,6 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,11 ,11 ,11 ,12 ,12 ,12 ,15 ,15 ,15 ,1 ,1 ,1 ,15 ,15 ,15 ,12 ,12 ,12 ,11 ,11 ,11 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,6 ,6 ,6 ,4 ,4 ,4 ,14 ,14 ,14 ,3 ,3 ,3 ,1 ,1 ,1 ,3 ,3 ,3 ,14 ,14 ,14 ,4 ,4 ,4 ,6 ,6 ,6 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,11 ,11 ,11 ,12 ,12 ,12 ,15 ,15 ,15 ,1 ,1 ,1 ,15 ,15 ,15 ,12 ,12 ,12 ,11 ,11 ,11 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,6 ,6 ,6 ,4 ,4 ,4 ,14 ,14 ,14 ,3 ,3 ,3 ,1 ,1 ,1 ,3 ,3 ,3 ,14 ,14 ,14 ,4 ,4 ,4 ,6 ,6 ,6 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,11 ,11 ,11 ,12 ,12 ,12 ,15 ,15 ,15 ,1 ,1 ,1 ,15 ,15 ,15 ,12 ,12 ,12 ,11 ,11 ,11 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,6 ,6 ,6 ,4 ,4 ,4 ,14 ,14 ,14 ,3 ,3 ,3 ,1 ,1 ,1 ,3 ,3 ,3 ,14 ,14 ,14 ,4 ,4 ,4 ,6 ,6 ,6 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,11 ,11 ,11 ,12 ,12 ,12 ,15 ,15 ,15 ,1 ,1 ,1 ,15 ,15 ,15 ,12 ,12 ,12 ,11 ,11 ,11 ,0 ,0 ,0

^^ I ! byte 0 ,0 ,0 ,6 ,6 ,6 ,4 ,4 ,4 ,14 ,14 ,14 ,3 ,3 ,3 ,1 ,1 ,1 ,3 ,3 ,3 ,14 ,14 ,14 ,4 ,4 ,4 ,6 ,6 ,6 ,0 ,0 ,0

MEGA65 ENHANCED DMA JOBS
The MEGA65’s implementation of the DMAgic supports significantly enhanced DMA
jobs. An enhanced DMA job is indicated by writing the low byte of the DMA list address
to $D705 instead of to $D700. The MEGA65 will then look for one or more job option
tokens at the start of the DMA list. Those tokens will be interpretted, before executing
the DMA job which immediately follows the end of job options token ($00).

Job option tokens that take an argument have the most-significant bit set, and al-
ways take a 1 byte option. Job option tokens that take no argument have the most-
significant-bit clear. Unsupported job option tokens are simply ignored. This allows for

78

future revisions of the DMAgic to add support for additional options, without breaking
backward compatibility.

These options are also used to achieve advanced features, such as hardware texture
scaling at up to 20Mpixels per second, and hardware line drawing at up to 40Mpixels
per second. These advanced functions are implemented by allowing complex cal-
culations to be made to the source and/or destination address of DMA jobs as they
execute.

The list of valid job option tokens is:

79

$00 End of job option list
$06 Disable use of transparent value
$07 Enable use of transparent value
$0A Use 11 byte F011A DMA list format
$0B Use 12 byte F011B DMA list format
$0D Write raw flux to floppy drive (see ??)
$0E Read raw flux to floppy drive (see ??)
$0F Read raw flux to floppy drive (see ??)
$53 Enable ‘Shallan Spiral’ Mode
$80 Source address bits 20 – 27
$81 Destination address bits 20 – 27
$82 Source skip rate (256ths of bytes)
$83 Source skip rate (whole bytes)
$84 Destination skip rate (256ths of bytes)
$85 Destination skip rate (whole bytes)
$86 Transparent value (bytes with matching value are not written)
$87 Set X column bytes (LSB) for line drawing destination address
$88 Set X column bytes (MSB) for line drawing destination address
$89 Set Y row bytes (LSB) for line drawing destination address
$8A Set Y row bytes (MSB) for line drawing destination address
$8B Slope (LSB) for line drawing destination address
$8C Slope (MSB) for line drawing destination address
$8D Slope accumulator initial fraction (LSB) for line drawing destination

address
$8E Slope accumulator initial fraction (MSB) for line drawing destination

address
$8F Line Drawing Mode enable and options for destination address (set

in argument byte): Bit 7 = enable line mode, Bit 6 = select X or Y
direction, Bit 5 = slope is negative.

$97 Set X column bytes (LSB) for line drawing source address
$98 Set X column bytes (MSB) for line drawing source address
$99 Set Y row bytes (LSB) for line drawing source address
$9A Set Y row bytes (MSB) for line drawing source address
$9B Slope (LSB) for line drawing source address
$9C Slope (MSB) for line drawing source address
$9D Slope accumulator initial fraction (LSB) for line drawing source ad-

dress
$9E Slope accumulator initial fraction (MSB) for line drawing source ad-

dress
$9F Line Drawing Mode enable and options for source address (set in

argument byte): Bit 7 = enable line mode, Bit 6 = select X or Y
direction, Bit 5 = slope is negative.

80

TEXTURE SCALING AND LINE DRAWING
The DMAgic supports an advanced internal address calculator that allows it to draw
scaled textures and draw lines with arbitrary slopes on VIC-IV FCM video displays.

For texture scaling, the FCM screen must be arranged vertically, as shown below:

0

1

2

25

26

27

By lining the characters into vertical columns like this, advancing vertically by one pixel
adds a constant 8 bytes each time, as shown below:

81

$000

$008

$010

$018

$020

$028

$030

$038

$001

$008

$011

$019

$021

$029

$031

$039

$002

$00A

$012

$01A

$022

$02A

$032

$03A

$003

$00B

$013

$01B

$023

$02B

$033

$03B

$004

$00C

$014

$01C

$024

$02C

$034

$03C

$005

$00D

$015

$01D

$025

$02D

$035

$03D

$006

$00E

$016

$01E

$026

$02E

$036

$03E

$007

$00F

$017

$01F

$027

$02F

$037

$03F

$040

$048

$050

$058

$060

$068

$070

$078

$041

$048

$051

$059

$061

$069

$071

$079

$042

$04A

$052

$05A

$062

$06A

$072

$07A

$043

$04B

$053

$05B

$063

$06B

$073

$07B

$044

$04C

$054

$05C

$064

$06C

$074

$07C

$045

$04D

$055

$05D

$065

$06D

$075

$07D

$046

$04E

$056

$05E

$066

$06E

$076

$07E

$047

$04F

$057

$05F

$067

$06F

$077

$07F

$080 $081 $082 $083 $084 $085 $086 $087

$088

The source and destination skip rates also allow setting the scaling factors. A skip rate
of $0100 this corresponds to stepping $01.00 pixels. To use the vertically stacked
FCM layout as the target for copying vertical lines of textrures, then the destination
skip rate should be $0800, i.e., 8.0 bytes per pixel. This would copy a vertical line
of texture data without scaling. By setting the source stepping to < $0100 will cause
some pixels to be repeated, effectively zooming the texture in, while setting the source
stepping to > $0100 will cause some pixels to be skipped, effectively zooming the
texture out. The destination stepping does not ordinary need to be adjusted. Note
that the texture data must be stored with each vertical stripe stored contiguously, so
that this mode can be used.

For line drawing, the DMA controller needs to know the screen layout, specifically,
what number must be added to the address of a rightmost pixel in one column of FCM
characters in order to calculate the address of the pixel appearing immediately to its
right. Similarly, it must also know how much must be added to the address of a bottom
most pixel in one row of FCM characters in order to calculate the address of the pixel

82

appearing immediately below it. This allows for flexible screen layout options, and
arbitrary screen sizes. You must then also specify the slope of the line, and whether
the line has the X or Y as its major axis, and whether the slope is positive or negative.

The file test_290.c in the https://github.com/mega65/mega65-tools repository pro-
vides an example of using these facilities to implement hardware accelerated line
drawing. This is very fast, as it draws lines at the full DMA fill speed, i.e., approxi-
mately 40,500,000 pixels per second.

INLINE DMA LISTS
Normally you have to setup a separate area of memory that contains the DMA list, and
then load the address of that area into the DMA address registers at $D70x. Because
the MEGA65’s DMA controller is part of the CPU, it supports an additional mode that
is very convenient, called inline DMA list mode.

This mode works like Enhanced DMA mode, except that the DMA list is read starting
from the current value of the Program Counter (PC) register. To use this mode, write
any value to $D707, to immediately a trigger a DMA job, with the list in the bytes
immediately following the instruction that writes to $D707.

The DMA list can be a single job, or chained, as with any other DMA job. The real
magic is that the Program Counter gets set to the next address after the end of the
DMA list, and that the DMA list is read from the CPU’s current memory mapping. This
means that you can execute code with DMA lists from any bank of memory, without
having to worry about which bank it is in.

For example, the following code would clear the C65-mode screen, before flashing
the border endlessly:

STA $ D 7 0 7

. byte $00 ; end of job o p t i o n s

. byte $03 ; fill

. word 2000 ; c o u n t

. word $ 0 0 2 0 ; v a l u e

. byte $00 ; src bank

. word $ 0 8 0 0 ; dst

. byte $00 ; dst bank

. byte $00 ; cmd hi

. word $ 0 0 0 0 ; m o d u l o / i g n o r e d

foo :

INC $ d 0 2 0

JMP foo

83

https://github.com/mega65/mega65-tools

AUDIO DMA
The MEGA65 includes four channels of DMA-driven audio playback that can be used
in place of the direct digital audio registers at $D6F8-$D6FB. That is, you must select
which of these two sources to feed to the audio cross-bar mixer. This is selected via
the AUDEN signal ($D711 bit 7), which simultaneously enables the audio DMA function
in the processor, as well as instructing the audio cross-bar mixer to use the audio from
this instead of the $D6F8-$D6FB digital audio registers. If you wish to have no other
audio than the audio DMA channels, the audio cross-bar mixer can be bypassed, and
the DMA audio played at full volume by setting the NOMIX signal ($D711 bit 4). In that
mode no audio from the SIDs, FM, microphones or other sources will be available. All
other bits in $D711 should ordinarily be left clear, i.e., write $80 to $D711 to enable
audio DMA.

Two channels form the left digital audio channel, and the other two channels form the
right digital audio channel. It is these left and right channels that are then fed into the
MEGA65’s audio cross-bar mixer.

As the DMA controller is part of the processor of the MEGA65, and the MEGA65
does not have reserved bus slots for multi-media operations, the MEGA65 uses idle
CPU cycles to perform background DMA. This requires that the MEGA65 CPU be set
to the “full speed” mode, i.e., approximately 40MHz. In this mode, there is a wait-
state whenever reading an operand from memory. Thus each instruction that loads
a byte from memory will create one implicit audio DMA slot. This is rarely a problem
in practice, except if the processor idles in a very tight loop. To ensure that audio
continues to play in the background, such loops should include a read instruction, such
as:

loop : LDA $ 1 2 3 4 // E n s u r e loop has at l e a s t one idle c y c l e for

// a u d i o DMA

JMP loop

Each of the four DMA channels is configured using a block of 16 registers at $D720,
$D730, $D740 and $D750, respectively. We will explain the registers for the first
channel, channel 0, at $D720 – $D72F.

Sample Address Management

To play an audio sample you must first supply the start address of the sample. This is a
24-bit address, and must be in the main chip memory of the MEGA65. This is done by
writing the address into $D72A – $D72C. This is the address of the first sample value
that will be played. You must then provide the end address of the sample in $D727
– $D728. But note that this is is only 16 bits. This is because the MEGA65 compares
only the bottom 16 bits of the address when checking if it has reached the end of a
sample. In practice, this means that samples cannot be more than 64KB in size. If
the sample contains a section that should be repeated, then the start address of the

84

repeating part should be loaded into $D721 – $D723, and the CH0LOOP bit should
be set ($D720 bit 6).

You can determine the current sample address at any time by reading the registers at
$D72A – $D72C. But beware: These registers are not latched, so it is possible that
the values may be updated as you read the registers, unless you stop the channel first
by clearing the CH0EN signal.

Sample Playback frequency and Volume

The MEGA65 controls the playback rate of audio DMA samples by using a 24-bit
counter. Whenever the 24-bit counter overflows, the next sample value is requested.
Sample speed control is achieved by setting the value added to this counter each
CPU cycle. Thus a value of $FFFFFF would result in a sample rate of almost 40.5
MHz. In practice, sample rates above a few megahertz are not possible, because
there are insufficient idle CPU cycles, and distorted audio will result. Even below this,
care must be taken to ensure that idle cycles come sufficiently often and dispersed
throughout the processor’s instruction stream to prevent distortion. At typical sample
rates below 16KHz and using 8-bit samples these effects are typically negligible for
normal instruction streams, and so no special action is normally required for typical
audio playback.

At the other end of the scale, sample rates as low as 40.5MHz/224 = 2.4 samples
per second are possible. This is sufficiently low enough for even the most demanding
infra-sound applications.

Volume is controlled by setting $D729. Maximum volume is obtained with the value
$FF, while a value of $00will effectively mute the channel. The first two audio channels
are normally allocated to the left, and the second two to the right. However, the
MEGA65 includes separate volume controls for the opposite channels. For example,
to play audio DMA channel 0 at full volume on both left and right-hand sides of the
audio output, set both $D729 and $D71C to $FF. This allows panning of the four audio
DMA channels.

Both the frequency and volume can be freely adjusted while a sample is playing to
produce various effects.

Pure Sine Wave

Where it is necessary to produce a stable sine wave, especially at higher frequencies,
there is a special mode to support this. By setting the CH0SINE signal, the audio
channel will play a 32 byte 16-bit sine wave pattern. The sample addresses still need
to be set, as though the sine wave table were located in the bottom 64 bytes of
memory, as the normal address generation logic is used in this mode. However, no
audio DMA fetches are performed when a channel is in this mode, thus avoiding all
sources of distortion due to irregular spacing of idle cycles in the processor’s instruction
stream.

85

This can be used to produce sine waves in both the audible range, as well as well into
the ultrasonic range, at frequencies exceeding 60,000Hz, provided that the MEGA65
is connected to an appropriately speaker arrangement.

Sample playback control

To begin a channel playing a sample, set the CH0EN signal ($D720 bit 7). The sample
will play until its completion, unless the CH0LOOP signal has also been set. When a
sample completes playing, the CH0STP flag will be set. The audio DMA subsystem
cannot presently generate interrupts.

Unlike on the Amiga™, the MEGA65 audio DMA system supports both 8 and 16-bit
samples. It also supports packed 4-bit samples, playing either the lower or upper
nibble of each sample byte. This allows two separate samples to occupy the same
byte, thus effectively halving the amount of space required to store two equal length
samples.

F018 “DMAGIC” DMA CONTROLLER
HEX DEC Signal Description

D700 55040
ADDRLSB-

TRIG
DMAgic DMA list address LSB, and
trigger DMA (when written)

D701 55041 ADDRMSB DMA list address high byte (address bits
8 – 15).

D702 55042 ADDRBANK DMA list address bank (address bits 16
– 22). Writing clears $D704.

MEGA65 DMA CONTROLLER
EXTENSIONS

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D703 55043 – EN018B
D704 55044 ADDRMB
D705 55045 ETRIG
D706 55046 ETRIGMAPD
D70E 55054 ADDRLSB

D711 55057 AUDEN BLKD AUD-
WRBLK NOMIX – AUDBLKTO

D71C 55068 CH0RVOL
D71D 55069 CH1RVOL

continued …

86

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D71E 55070 CH2LVOL
D71F 55071 CH3LVOL
D720 55072 CH0EN CH0LOOP CH0SGN CH0SINE CH0STP – CH0SBITS
D721 55073 CH0BADDRL
D722 55074 CH0BADDRC
D723 55075 CH0BADDRM
D724 55076 CH0FREQL
D725 55077 CH0FREQC
D726 55078 CH0FREQM
D727 55079 CH0TADDRL
D728 55080 CH0TADDRM
D729 55081 CH0VOLUME
D72A 55082 CH0CURADDRL
D72B 55083 CH0CURADDRC
D72C 55084 CH0CURADDRM
D72D 55085 CH0TMRADDRL
D72E 55086 CH0TMRADDRC
D72F 55087 CH0TMRADDRM
D730 55088 CH1EN CH1LOOP CH1SGN CH1SINE CH1STP – CH1SBITS
D731 55089 CH1BADDRL
D732 55090 CH1BADDRC
D733 55091 CH1BADDRM
D734 55092 CH1FREQL
D735 55093 CH1FREQC
D736 55094 CH1FREQM
D737 55095 CH1TADDRL
D738 55096 CH1TADDRM
D739 55097 CH1VOLUME
D73A 55098 CH1CURADDRL
D73B 55099 CH1CURADDRC
D73C 55100 CH1CURADDRM
D73D 55101 CH1TMRADDRL
D73E 55102 CH1TMRADDRC
D73F 55103 CH1TMRADDRM
D740 55104 CH2EN CH2LOOP CH2SGN CH2SINE CH2STP – CH2SBITS
D741 55105 CH2BADDRL
D742 55106 CH2BADDRC
D743 55107 CH2BADDRM
D744 55108 CH2FREQL
D745 55109 CH2FREQC
D746 55110 CH2FREQM

continued …

87

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D747 55111 CH2TADDRL
D748 55112 CH2TADDRM
D749 55113 CH2VOLUME
D74A 55114 CH2CURADDRL
D74B 55115 CH2CURADDRC
D74C 55116 CH2CURADDRM
D74D 55117 CH2TMRADDRL
D74E 55118 CH2TMRADDRC
D74F 55119 CH2TMRADDRM
D750 55120 CH3EN CH3LOOP CH3SGN CH3SINE CH3STP – CH3SBITS
D751 55121 CH3BADDRL
D752 55122 CH3BADDRC
D753 55123 CH3BADDRM
D754 55124 CH3FREQL
D755 55125 CH3FREQC
D756 55126 CH3FREQM
D757 55127 CH3TADDRL
D758 55128 CH3TADDRM
D759 55129 CH3VOLUME
D75A 55130 CH3CURADDRL
D75B 55131 CH3CURADDRC
D75C 55132 CH3CURADDRM
D75D 55133 CH3TMRADDRL
D75E 55134 CH3TMRADDRC
D75F 55135 CH3TMRADDRM

• ADDRLSB DMA list address low byte (address bits 0 – 7) WITHOUT STARTING A
DMA JOB (used by Hypervisor for unfreezing DMA-using tasks)

• ADDRMB DMA list address mega-byte

• AUDBLKTO Audio DMA block timeout (read only) DEBUG

• AUDEN Enable Audio DMA

• AUDWRBLK Audio DMA block writes (samples still get read)

• BLKD Audio DMA blocked (read only) DEBUG

• CH0RVOL Audio DMA channel 0 right channel volume

• CH1RVOL Audio DMA channel 1 right channel volume

• CH2LVOL Audio DMA channel 2 left channel volume

• CH3LVOL Audio DMA channel 3 left channel volume

88

• CHXBADDRC Audio DMA channel X base address middle byte

• CHXBADDRL Audio DMA channel X base address LSB

• CHXBADDRM Audio DMA channel X base address MSB

• CHXCURADDRC Audio DMA channel X current address middle byte

• CHXCURADDRL Audio DMA channel X current address LSB

• CHXCURADDRM Audio DMA channel X current address MSB

• CHXEN Enable Audio DMA channel X

• CHXFREQC Audio DMA channel X frequency middle byte

• CHXFREQL Audio DMA channel X frequency LSB

• CHXFREQM Audio DMA channel X frequency MSB

• CHXLOOP Enable Audio DMA channel X looping

• CHXSBITS Audio DMA channel X sample bits (11=16, 10=8, 01=upper nybl,
00=lower nybl)

• CHXSGN Enable Audio DMA channel X signed samples

• CHXSINE Audio DMA channel X play 32-sample sine wave instead of DMA data

• CHXSTP Audio DMA channel X stop flag

• CHXTADDRL Audio DMA channel X top address LSB

• CHXTADDRM Audio DMA channel X top address MSB

• CHXTMRADDRC Audio DMA channel X timing counter middle byte

• CHXTMRADDRL Audio DMA channel X timing counter LSB

• CHXTMRADDRM Audio DMA channel X timing counter MSB

• CHXVOLUME Audio DMA channel X playback volume

• EN018B DMA enable F018B mode (adds sub-command byte)

• ETRIG Set low-order byte of DMA list address, and trigger Enhanced DMA job,
with list address specified as 28-bit flat address (uses DMA option list)

• ETRIGMAPD Set low-order byte of DMA list address, and trigger Enhanced DMA
job, with list in current CPU memory map (uses DMA option list)

• NOMIX Audio DMA bypasses audio mixer

89

UNIMPLEMENTED FUNCTIONALITY
The MEGA65’s DMAgic does not currently support either memory-swap or mini-term
operations.

Miniterms were intended for bitplane blitting, which is not required for the MEGA65
which offers greatly advanced character modes and stepped and fractional DMA ad-
dress incrementing which allows efficient texture copying and scaling. Also there ex-
ists no known software which ever used this facility, and it remains uncertain if it was
ever implemented in any revision of the DMAgic chip used in C65 prototypes.

Thememory-swap operation is intended to be implemented, but can beworked around
in the meantime by copying the first region to a 3rd region that acts as a temporary
buffer, then copying the 2nd region to the 1st, and the 3rd to the 2nd.

90

CHAPTER 5
6526 Complex Interface
Adapter (CIA) Registers

• CIA 6526 Registers

• CIA 6526 Hypervisor Registers

92

CIA 6526 REGISTERS
CIA1 Registers

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DC00 56320 PORTA
DC01 56321 PORTB
DC02 56322 DDRA
DC03 56323 DDRB
DC04 56324 TIMERA
DC05 56325 TIMERA
DC06 56326 TIMERB
DC07 56327 TIMERB
DC08 56328 – TODJIF
DC09 56329 – TODSEC
DC0A 56330 – TODMIN

DC0B 56331 TOD-
AMPM – TODHOUR

DC0C 56332 SDR
DC0D 56333 IR ISRCLR FLG SP ALRM TB TA
DC0E 56334 TOD50 SPMOD IMODA – RMODA OMODA PBONA STRTA
DC0F 56335 TODEDIT IMODB LOAD RMODB OMODB PBONB STRTB

• ALRM TOD alarm

• DDRA Port A DDR

• DDRB Port B DDR

• FLG FLAG edge detected

• IMODA Timer A tick source

• IMODB Timer B tick source

• IR Interrupt flag

• ISRCLR Placeholder - Reading clears events

• LOAD Strobe input to force-load timers

• OMODA Timer A toggle or pulse

• OMODB Timer B toggle or pulse

• PBONA Timer A PB6 out

• PBONB Timer B PB7 out

• PORTA Port A

93

• PORTB Port B

• RMODA Timer A one-shot mode

• RMODB Timer B one-shot mode

• SDR shift register data register(writing starts sending)

• SP shift register full/empty

• SPMOD Serial port direction

• STRTA Timer A start

• STRTB Timer B start

• TA Timer A underflow

• TB Timer B underflow

• TIMERA Timer A counter (16 bit)

• TIMERB Timer B counter (16 bit)

• TOD50 50/60Hz select for TOD clock

• TODAMPM TOD PM flag

• TODEDIT TOD alarm edit

• TODHOUR TOD hours

• TODJIF TOD tenths of seconds

• TODMIN TOD minutes

• TODSEC TOD seconds

CIA2 Registers

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DD00 56576 PORTA
DD01 56577 PORTB
DD02 56578 DDRA
DD03 56579 DDRB
DD04 56580 TIMERA
DD05 56581 TIMERA
DD06 56582 TIMERB
DD07 56583 TIMERB
DD08 56584 – TODJIF
DD09 56585 – TODSEC

DD0B 56587 TOD-
AMPM – TODHOUR

continued …

94

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DD0C 56588 SDR
DD0D 56589 IR ISRCLR FLG SP ALRM TB TA
DD0E 56590 TOD50 SPMOD IMODA – RMODA OMODA PBONA STRTA
DD0F 56591 TODEDIT IMODB LOAD RMODB OMODB PBONB STRTB

• ALRM TOD alarm

• DDRA Port A DDR

• DDRB Port B DDR

• FLG FLAG edge detected

• IMODA Timer A tick source

• IMODB Timer B tick source

• IR Interrupt flag

• ISRCLR Placeholder - Reading clears events

• LOAD Strobe input to force-load timers

• OMODA Timer A toggle or pulse

• OMODB Timer B toggle or pulse

• PBONA Timer A PB6 out

• PBONB Timer B PB7 out

• PORTA Port A

• PORTB Port B

• RMODA Timer A one-shot mode

• RMODB Timer B one-shot mode

• SDR shift register data register(writing starts sending)

• SP shift register full/empty

• SPMOD Serial port direction

• STRTA Timer A start

• STRTB Timer B start

• TA Timer A underflow

• TB Timer B underflow

• TIMERA Timer A counter (16 bit)

95

• TIMERB Timer B counter (16 bit)

• TOD50 50/60Hz select for TOD clock

• TODAMPM TOD PM flag

• TODEDIT TOD alarm edit

• TODHOUR TOD hours

• TODJIF TOD tenths of seconds

• TODSEC TOD seconds

CIA 6526 HYPERVISOR REGISTERS
In addition to the standard CIA registers available on the C64 and C65, the MEGA65
provides an additional set of registers that are visible only when the system is in Hyper-
visor Mode. These additional registers allow the internal state of the CIA to be more
fully extracted when freezing, thus allowing more programs to function correctly after
being frozen. They are not visible when using the MEGA65 normally, and can be safely
ignored by programmers who are not programming the MEGA65 in Hypervisor Mode.

CIA1 Hypervisor Registers

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DC10 56336 TALATCH
DC11 56337 TALATCH
DC12 56338 TALATCH
DC13 56339 TALATCH
DC14 56340 TALATCH
DC15 56341 TALATCH
DC16 56342 TALATCH
DC17 56343 TALATCH
DC18 56344 IMFLG IMSP IMALRM IMTB TODJIF
DC19 56345 TODSEC
DC1A 56346 TODMIN

DC1B 56347 TOD-
AMPM TODHOUR

DC1C 56348 DD00-
DELAY ALRMJIF

DC1D 56349 ALRMSEC
DC1E 56350 ALRMMIN

DC1F 56351 ALRM-
AMPM ALRMHOUR

96

• ALRMAMPM TOD Alarm AM/PM flag

• ALRMHOUR TOD Alarm hours value

• ALRMJIF TOD Alarm 10ths of seconds value (actually all 8 bits)

• ALRMMIN TOD Alarm minutes value

• ALRMSEC TOD Alarm seconds value

• DD00DELAY Enable delaying writes to $DD00 by 3 cycles to match real 6502
timing

• IMALRM Interrupt mask for TOD alarm

• IMFLG Interrupt mask for FLAG line

• IMSP Interrupt mask for shift register (serial port)

• IMTB Interrupt mask for Timer B

• TALATCH Timer A latch value (16 bit)

• TODAMPM TOD AM/PM flag

• TODHOUR TOD hours value

• TODJIF TOD 10ths of seconds value

• TODMIN TOD Alarm minutes value

• TODSEC TOD Alarm seconds value

CIA2 Hypervisor Registers

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DD10 56592 TALATCH
DD11 56593 TALATCH
DD12 56594 TALATCH
DD13 56595 TALATCH
DD14 56596 TALATCH
DD15 56597 TALATCH
DD16 56598 TALATCH
DD17 56599 TALATCH
DD18 56600 IMFLG IMSP IMALRM IMTB TODJIF
DD19 56601 TODSEC
DD1A 56602 TODMIN

DD1B 56603 TOD-
AMPM TODHOUR

DD1C 56604 DD00-
DELAY ALRMJIF

DD1D 56605 ALRMSEC
continued …

97

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DD1E 56606 ALRMMIN

DD1F 56607 ALRM-
AMPM ALRMHOUR

• ALRMAMPM TOD Alarm AM/PM flag

• ALRMHOUR TOD Alarm hours value

• ALRMJIF TOD Alarm 10ths of seconds value (actually all 8 bits)

• ALRMMIN TOD Alarm minutes value

• ALRMSEC TOD Alarm seconds value

• DD00DELAY Enable delaying writes to $DD00 by 3 cycles to match real 6502
timing

• IMALRM Interrupt mask for TOD alarm

• IMFLG Interrupt mask for FLAG line

• IMSP Interrupt mask for shift register (serial port)

• IMTB Interrupt mask for Timer B

• TALATCH Timer A latch value (16 bit)

• TODAMPM TOD AM/PM flag

• TODHOUR TOD hours value

• TODJIF TOD 10ths of seconds value

• TODMIN TOD Alarm minutes value

• TODSEC TOD Alarm seconds value

98

CHAPTER 6
4551 UART, GPIO and Utility

Controller
• C65 6551 UART Registers

• 4551 General Purpose I/O & Miscella-

neous Interface Registers

100

C65 6551 UART REGISTERS
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D600 54784 DATA

D601 54785 – FRMERR PTYERR RXOVR-
RUN RXRDY

D602 54786 TXEN RXEN SYNCMOD CHARSZ PTYEN PTYEVEN
D603 54787 DIVISOR
D604 54788 DIVISOR
D605 54789 IMTXIRQ IMRXIRQ IMTXNMI IMRXNMI –
D606 54790 IFTXIRQ IFRXIRQ IFTXNMI IFRXNMI –

• CHARSZ UART character size: 00=8, 01=7, 10=6, 11=5 bits per byte

• DATA UART data register (read or write)

• DIVISOR UART baud rate divisor (16 bit). Baud rate = 7.09375MHz / DIVISOR,
unless MEGA65 fast UART mode is enabled, in which case baud rate = 80MHz
/ DIVISOR

• FRMERR UART RX framing error flag (clear by reading $D600)

• IFRXIRQ UART interrupt flag: IRQ on RX (not yet implemented on the MEGA65)

• IFRXNMI UART interrupt flag: NMI on RX (not yet implemented on the MEGA65)

• IFTXIRQ UART interrupt flag: IRQ on TX (not yet implemented on the MEGA65)

• IFTXNMI UART interrupt flag: NMI on TX (not yet implemented on the MEGA65)

• IMRXIRQ UART interrupt mask: IRQ on RX (not yet implemented on the MEGA65)

• IMRXNMIUART interrupt mask: NMI on RX (not yet implemented on theMEGA65)

• IMTXIRQ UART interrupt mask: IRQ on TX (not yet implemented on the MEGA65)

• IMTXNMI UART interrupt mask: NMI on TX (not yet implemented on theMEGA65)

• PTYEN UART Parity enable: 1=enabled

• PTYERR UART RX parity error flag (clear by reading $D600)

• PTYEVEN UART Parity: 1=even, 0=odd

• RXEN UART enable receive

• RXOVRRUN UART RX overrun flag (clear by reading $D600)

• RXRDY UART RX byte ready flag (clear by reading $D600)

• SYNCMOD UART synchronisation mode flags (00=RX & TX both async, 01=RX
sync, TX async, 1x=TX sync, RX async (unused on the MEGA65)

101

• TXEN UART enable transmit

4551 GENERAL PURPOSE I/O &
MISCELLANEOUS INTERFACE
REGISTERS

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D609 54793 – UFAST

D60A 54794 KEYQUEUE
MODKEY-

CAPS
MOD-

KEYSCRL
MOD-
KEYALT

MOD-
KEYMEGA

MODK-
EYCTRL

MOD-
KEYRSHFT

MOD-
KEYLSHFT

D60B 54795 OSKZEN OSKZON PORTF
D60C 54796 PORTFDDR PORTFDDR
D60D 54797 HDSCL HDSDA SDBSH SDCS SDCLK SDDATA RST41 CONN41
D60E 54798 BASHDDR

D60F 54799 AC-
CESSKEY OSKDIM REALHW – KEYUP KEYLEFT

D610 54800 ASCIIKEY
D611 54801 MDISABLE MCAPS MSCRL MALT MMEGA MCTRL MRSHFT MLSHFT

D612 54802 LJOYB LJOYA JOYSWAP OSKDE-
BUG –

D615 54805 OSKEN VIRTKEY1
D616 54806 OSKALT VIRTKEY2
D617 54807 OSKTOP VIRTKEY3
D618 54808 KSCNRATE
D619 54809 PETSCIIKEY
D61A 54810 SYSCTL

D61D 54813 KEYLED-
ENA KEYLEDREG

D61E 54814 KEYLEDVAL
D620 54816 POTAX
D621 54817 POTAY
D622 54818 POTBX
D623 54819 POTBY
D625 54821 J21L
D626 54822 J21H
D627 54823 J21LDDR
D628 54824 BOARDMINOR J21HDDR
D629 54825 M65MODEL

• ACCESSKEY Enable accessible keyboard input via joystick port 2 fire button

102

• ASCIIKEY Top of typing event queue as ASCII. Write to clear event ready for
next.

• BASHDDR Data Direction Register (DDR) for $D60D bit bashing port.

• BOARDMINOR Read PCB minor revision (R5+ only, else reads zeroes)

• CONN41 Internal 1541 drive connect (1=connect internal 1541 drive to IEC
bus)

• HDSCL HDMI I2C control interface SCL clock

• HDSDA HDMI I2C control interface SDA data line

• J21H J21 pins 11 – 14 input/output values

• J21HDDR J21 pins 11 – 14 data direction register

• J21L J21 pins 1 – 6, 9 – 10 input/output values

• J21LDDR J21 pins 1 – 6, 9 – 10 data direction register

• JOYSWAP Exchange joystick ports 1 & 2

• KEYLEDENA Keyboard LED control enable

• KEYLEDREG Keyboard LED register select (R,G,B channels x 4 = 0 to 11)

• KEYLEDVAL Keyboard LED register value (write only)

• KEYLEFT Directly read C65 Cursor left key

• KEYQUEUE 1 = Typing event queue is non-empty. Write 0 to this bit to flush
queue.

• KEYUP Directly read C65 Cursor up key

• KSCNRATE Physical keyboard scan rate ($00=50MHz, $FF=∼200KHz)

• LJOYA Rotate inputs of joystick A by 180 degrees (for left handed use)

• LJOYB Rotate inputs of joystick B by 180 degrees (for left handed use)

• M65MODEL MEGA65 model ID. Can be used to determine the model of
MEGA65 a programme is running on, e.g., to enable touch controls on MEGA-
phone.

• MALT ALT key state (immediate; read only).

• MCAPS CAPS LOCK key state (immediate; read only).

• MCTRL CTRL key state (immediate; read only).

• MDISABLE Disable modifiers.

• MLSHFT Left shift key state (immediate; read only).

• MMEGA MEGA/C= key state (immediate; read only).

103

• MODKEYALT ALT key state at top of typing event queue. 1 = held during event.

• MODKEYCAPS CAPS LOCK key state at top of typing event queue. 1 = held
during event.

• MODKEYCTRL CTRL key state at top of typing event queue. 1 = held during
event.

• MODKEYLSHFT Left shift key state at top of typing event queue. 1 = held during
event.

• MODKEYMEGA MEGA/C= key state at top of typing event queue. 1 = held
during event.

• MODKEYRSHFT Right shift key state at top of typing event queue. 1 = held
during event.

• MODKEYSCRL NOSCRL key state at top of typing event queue. 1 = held during
event.

• MRSHFT Right shift key state (immediate; read only).

• MSCRL NOSCRL key state (immediate; read only).

• OSKALT Display alternate on-screen keyboard layout (typically dial pad for
MEGA65 telephone)

• OSKDEBUG Debug OSK overlay (WRITE ONLY)

• OSKDIM Light or heavy dimming of background material behind on-screen key-
board

• OSKEN Enable display of on-screen keyboard composited overlay

• OSKTOP 1=Display on-screen keyboard at top, 0=Disply on-screen keyboard at
bottom of screen.

• OSKZEN Display hardware zoom of region under first touch point for on-screen
keyboard

• OSKZON Display hardware zoom of region under first touch point always

• PETSCIIKEY Top of typing event queue as PETSCII. Write to clear event ready
for next.

• PORTF PMOD port A on FPGA board (data) (Nexys4 boards only)

• PORTFDDR PMOD port A on FPGA board (DDR)

• POTAX Read Port A paddle X, without having to fiddle with SID/CIA settings.

• POTAY Read Port A paddle Y, without having to fiddle with SID/CIA settings.

• POTBX Read Port B paddle X, without having to fiddle with SID/CIA settings.

• POTBY Read Port B paddle Y, without having to fiddle with SID/CIA settings.

104

• REALHW Set to 1 if the MEGA65 is running on real hardware, set to 0 if emulated
(Xemu) or simulated (ghdl)

• RST41 Internal 1541 drive reset (1=reset, 0=operate)

• SDBSH Enable SD card bitbash mode

• SDCLK SD card SCLK

• SDCS SD card CS_BO

• SDDATA SD card MOSI/MISO

• SYSCTL System control flags (target specific)

• UFAST C65 UART BAUD clock source: 1 = 7.09375MHz, 0 = 80MHz (VIC-IV
pixel clock)

• VIRTKEY1 Set to $7F for no key down, else specify virtual key press.

• VIRTKEY2 Set to $7F for no key down, else specify 2nd virtual key press.

• VIRTKEY3 Set to $7F for no key down, else specify 3nd virtual key press.

105

106

CHAPTER 7
45E100 Fast Ethernet

Controller
• Overview

• Memory Mapped Registers

• Example Programs

108

OVERVIEW
The 45E100 is a new and simple Fast Ethernet controller that has been designed
specially for the MEGA65 and for 8-bit computers generally. In addition to supporting
100Mbit Fast Ethernet, it is radically different from other Ethernet controllers, such as
the RR-NET.

The 45E100 includes four receive buffers, allowing upto three frames to be received
while another is being processed, or to allow less frequent processing of interrupts.
These receive buffers can be memory mapped, and also directly accessed using the
MEGA65’s DMA controller. Together with automatic CRC32 checking on reception,
and automatic CRC32 generation for transmit, these features considerably reduce
the burden on the processor, and make it much simpler to write ethernet-enabled
programs.

The 45E100 also supports true full-duplex operation at 100Mbit per second, allowing
for total bi-directional throughput exceeding 100Mbit per second. The MAC address
is software configurable, and promiscuous mode is supported, as are individual control
of the reception of broadcast and multi-cast Ethernet frames.

The 45E100 also supports both transmit and receive interrupts, allowing greatly im-
proved real-world performance. When especially low latency is required, it is also
possible to immediately abort the transmission of the current Ethernet frame, so that
a higher-priority frame can be immediately sent. These features combine to enable
sub-millisecond round trip latencies, which can be of particular value for interactive
applications, such as multi-player network games.

Differences to the RR-NET and similar solutions

The RR-NET and other Ethernet controllers for the Commodore™ line of 8-bit home
computers generally use an Ethernet controller that was designed for 16-bit PCs, but
that also supports a so-called “8-bit mode,” which suffers from a number of disadvan-
tages. These disadvantages include the lack of working interrupts, as well as processor
intensive access to the Ethernet frame buffers. The lack of interrupts forces programs
to use polling to check for the arrival of new Ethernet frames. This, together with the
complexities of accessing the buffers results in an Ethernet interface that is very slow,
and whose real-world throughput is considerably less than its theoretical 10Mbits per
second. Even a Commodore 64 with REU cannot achieve speeds above several tens
of kilobytes per second.

In contrast, the 45E100 supports both RX (Ethernet frame received) interrupts and
TX (ready to transmit) interrupts, freeing the processor from having to poll the device.
Because the 45E100 supports RX interrupts, there is no need for large numbers of
receive buffers, which is why the 45E100 requires only two RX buffers to achieve very
high levels of performance.

Further, the 45E100 supports direct memory mapping of the Ethernet frame buffers,
allowing for much more efficient access, including by DMA. Using the MEGA65’s in-

109

tegrated DMA controller it is quite possible to achieve transfer rates of several mega-
bytes per second – some 100x faster than the RR-NET.

Theory of Operation: Receiving Frames

The 45E100 is simple to operate: To begin receiving Ethernet frames, the programmer
needs only to clear the RST and TXRST bits (bit 0 of register $D6E0) to ensure that the
Ethernet controller is reset, and then set these bits to 1, to release the controller from
the reset state. It will then auto-negotiate connection at the highest available speed,
typically 100Mbit, full-duplex.

If you wish to simply poll for the arrival of ethernet frames, check the RXQ bit (bit 5 of
$D6E1). If it is set, then there is at least one frame that has been received. To access
the next frame that has been received, write $01 to $D6E1, and then $03 to $D6E1.
This will rotate the ring of receive buffers, to make the next received frame accessible
by the processor. The receive buffer that was previously accessible by the processor
is marked free, and the 45E100 will use it to receive another ethernet frame when
required.

Because the 45E100 has four receive buffers, it is possible that to process multiple
frames in succession by following this procedure. If all receive buffers contain received
frames, and the processor has not accepted them, then the RXBLKD signal will be
asserted, so that the processor knows that it if any more frames are received, they
will be lost. Programmers should take care to avoid this situation. As the 45E100
supports receive interrupts, this is generally easy to manage – but don’t underestimate
how often ethernet frames can arrive on a 100mbit Fast Ethernet connection: If a
sender sends a continuous stream of minimum-length ethernet frames, they can arrive
every 6 microseconds or so! While, it is unlikely that you will have to deal with such a
high rate of packet reception, you should anticipate the need to process packets at
least every milli-second. In particular, a once-per-frame CIA or raster IRQ may cause
some packets to be lost, more than three arrive in a 16 – 20 ms video frame. The
RXBLKD signal can be used to determine if this situation is likely to have occurred. But
note that it indicates only when all receive buffers are occupied, not if any further
frames arrived while there were no free receive buffers.

The receive buffers are 2KB bytes each, and can each hold only one received ethernet
frame at a time. This is different to some ethernet controllers that use their total receive
buffer memory as a simple ring buffer. The reason for this is to keep the mechanism
for programmers as simple as possible. By having the fixed buffers, it means that the
controller can memory map the received ethernet frames in exactly the same location
each time, making it possible to write much simpler receiver programs, because the
location of the received ethernet frames can be assumed to be constant.

The structure of a receive buffer containing an ethernet frame is quite simple: The first
two bytes indicate the length of the received frame. The frame then follows immedi-
ately. The effective Maximum Transport Unit (MTU) length is 2,042 bytes, as the last
four bytes are occupied by the CRC32 checksum of the received ethernet frame. The
layout of the receive buffers is thus as follows:

110

HEX DEC Length Description

0000 0 1 The low byte of the length of the received
ethernet frame.

0001 1 1

The lower four bits contain the upper bits of
the length of the received ethernet frame. Bit
4 is set if the received ethernet frame is a
multi-cast frame. Bit 5 if it is a broadcast
frame. Bit 6 is set if the frame’s destination
address matches the 45E100’s programmed
MAC address. Bit 7 is set if the CRC32 check
for the received frame failed, i.e., that the
frame is either truncated or was corrupted in
transit.

0002 –
07FB

2 –
2,043 2,042 The received frame. Frames shorter than

2,042 bytes will begin at offset 2.

07FC –
07FF

2,044 –
2,047 4

Reserved space for holding the CRC32 code
during reception. The CRC32 code is,
however, always located directly after the
received frame, and thus will only occupy this
space if the received frame is more than
2,038 bytes long. ”

Because of the very rapid rate at which Fast Ethernet frames can be received, a pro-
grammer should use the receive interrupt feature, enabled by setting RXQEN (bit 7
of $D6E1). Polling is possible as an alternative, but is not recommended with the
45E100, because at the 100Mbit Fast Ethernet speed, packets can arrive as often
as every 5 microseconds. Fortunately, at the MEGA65’s 40MHz full speed mode, and
using the 20MB per second DMA copy functionality, it is possible to keep up with such
high data rates.

Accessing the Ethernet Frame Buffers

Unlike on the RR-NET, the 45E100’s ethernet frame buffers are able to be memory
mapped, allowing rapid access via DMA or through assembly language programs. It
is also possible to access the buffers from BASIC with some care.

The frame buffers can either be accessed from their natural location in the MEGA65’s
extended address space at address $FFDE800 – $FFDEFFF, or they can be mapped
into the normal C64/C65 $D000 I/O address space. Care must be taken as map-
ping the ethernet frame buffers into the $D000 I/O address space causes all other
I/O devices to unavailable during this time. Therefore CIA-based interrupts MUST be
disabled before doing so, whether using BASIC or machine code. Therefore when
programming in assembly language or machine code, it is recommended to use the
natural location, and to access this memory area using one of the three mechanisms
for accessing extended address space, which are described in the MEGA65 Book,
Accessing memory beyond the 1MB point (subsection J).

111

Themethod of disabling interrupts differs depending on the context in which a program
is being written. For programs being written using C64-mode’s BASIC 2, the following
will work:

PO KE 56 33 3 , 1 2 7 : REM D I S A B L E CIA T I M E R IRQS

While for MEGA65’s BASIC 65, the following must instead be used, because a VIC-III
raster interrupt is used instead of a CIA-based timer interrupt:

PO KE 53 27 4 ,0: REM D I S A B L E VIC - II / III / IV R A S T E R IRQS

Once this has been done, the I/O context for the ethernet controller can be activated
by writing $45 (69 in decimal, equal to the character ’E’ in PETSCII)) and $54 (84 in
decimal, equal to the character ’T’ in PETSCII) into the VIC-IV’s KEY register ($D02F,
53295 in decimal), for example:

PO KE 53 29 5 , ASC (" E "): P OK E5 32 95 , ASC (" T ")

At this point, the ethernet RX buffer can be read beginning at location $D000 (53248
in decimal), and the TX buffer can be written to at the same address. Refer to ‘Theory
of Operation: Receiving Frames’ above for further explanation on this.

Once you have finished accessing the ethernet frame buffer, you can restore the nor-
mal C64, C65 or MEGA65 I/O context by writing to the VIC-III/IV’s KEY register. In
most cases, it will make the most sense to revert to the MEGA65’s I/O context by
writing $47 (71 decimal) in and $53 (83 in decimal) to the KEY register, for example:

PO KE 53 29 5 , ASC (" G "): P OK E5 32 95 , ASC (" S ")

Finally, you should then re-enable interrupts, which will again depend on whether you
are programming from C64 or C65-mode. For C64-mode:

PO KE 56 33 3 ,129

For C65-mode it would be:

PO KE 53 27 4 ,129

Theory of Operation: Sending Frames

Sending frames is similarly simple: The programmust simply load the frame to be trans-
mitted into the transmit buffer, write its length into TXSZLSB and TXSZMSB registers,
and then write $01 into the COMMAND register. The frame will then begin to transmit,
as soon as the transmitter is idle. There is no need to calculate and attach an ethernet
CRC32 field, as the 45E100 does this automatically.

112

Unlike for the receiver, there is only one frame buffer for the transmitter (this may be
changed in a future revision). This means that you cannot prepare the next frame until
the previous frame has already been sent. This slightly reduces the maximum data
throughput, in return for a very simple architecture.

Also, note that the transmit buffer is write-only from the processor bus interface. This
means that you cannot directly read the contents of the transmit buffer, but must load
values “blind”. Finally, the 45E100 allows you to send ethernet.

Advanced Features

In addition to operating as a simple and efficient ethernet frame transceiver, the
45E100 includes a number of advanced features, described here.

Broadcast and Multicast Traffic and Promiscuous Mode

The 45E100 supports filtering based on the destination Ethernet address, i.e., MAC
address. By default, only frames where the destination Ethernet address matches
the ethernet address programmed into the MACADDR1 – MACADDR6 registers will be
received. However, if the MCST bit is set, then multicast ethernet frames will also
be received. Similarly, setting the BCST bit will allow all broadcast frames, i.e., with
MAC address ff:ff:ff:ff:ff:ff, to be received. Finally, if the NOPROM bit is cleared, the
45E100 disables the filter entirely, and will receive all valid ethernet frames.

Debugging and Diagnosis Features

The 45E100 also supports several features to assist in the diagnosis of ethernet prob-
lems. First, if the NOCRC bit is set, then even ethernet frames that have invalid CRC32
values will be received. This can help debug faulty ethernet devices on a network.

If the STRM bit is set, the ethernet transmitter transmits a continuous stream of de-
bugging frames supplied via a special high-bandwidth logging interface. By default,
the 45E100 emits a stream of approximately 2,200 byte ethernet frames that con-
tain compressed video provided by a VIC-IV or compatible video controller that sup-
ports the MEGA65 video-over-ethernet interface. By writing a custom decoder for this
stream of ethernet frames, it is possible to create a remote display of the MEGA65 via
ethernet. Such a remote display can be used, for example, to facilitate digital capture
of the display of a MEGA65.

The size and content of the debugging frames can be controlled by writing special
values to the COMMAND register. Writing $F1 allows the selection of frames that are
1,200 bytes long. While this reduces the performance of the debugging and streaming
features, it allows the reception of these frames on systems whose ethernet controllers
cannot be configured to receive frames of 2,200 bytes.

If the STRM bit is set and bit 2 of $D6E1 is also set, a compressed log of instructions
executed by the 45gs02 CPU will instead be streamed, if a compatible processor is
connected to this interface. This mechanism includes back-pressure, and will cause
the 45gs02 processor to slowdown, so that the instruction data can be emitted. This

113

typically limits the speed of the connected 45gs02 processor to around 5MHz, de-
pending on the particular instruction mix.

Note also that the status of bit 2 of $D6E1 cannot currently be read directly. This may
be corrected in a future revision.

Finally, if the video streaming functionality is enabled, this also enables reception of
synthetic keyboard events via ethernet. These are delivered to theMEGA65’s Keyboard
Complex Interface Adapter (KCIA), allowing full remote interaction with a MEGA65 via
its ethernet interface. This feature is primarily intended for development.

MEMORY MAPPED REGISTERS
The 45E100 Fast Ethernet controller is a MEGA65-specific feature. It is therefore only
available in the MEGA65 I/O context. This is enabled by writing $53 and then $47 to
VIC-IV register $D02F. If programming in BASIC, this can be done with:

PO KE 53 29 5 , ASC (" G "): P OK E5 32 95 , ASC (" S ")

The 45E100 Fast Ethernet controller has the following registers

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

D6E0 55008 TXIDLE RXBLKD – RCENABLEDDRXDV DRXD TXRST RST

D6E1 55009 RXQEN TXQEN RXQ TXQ STRM RXBF –
D6E2 55010 TXSZLSB
D6E3 55011 TXSZMSB
D6E4 55012 COMMAND
D6E5 55013 RXPH MCST BCST TXPH NOCRC NOPROM
D6E6 55014 MIIMPHY MIIMREG
D6E7 55015 MIIMVLSB
D6E8 55016 MIIMVMSB
D6E9 55017 MACADDR1
D6EA 55018 MACADDR2
D6EB 55019 MACADDR3
D6EC 55020 MACADDR4
D6ED 55021 MACADDR5
D6EE 55022 MACADDR6

• BCST Accept broadcast frames

• COMMAND Ethernet command register (write only)

• DRXD Read ethernet RX bits currently on the wire

• DRXDV Read ethernet RX data valid (debug)

114

• MACADDRX Ethernet MAC address

• MCST Accept multicast frames

• MIIMPHY Ethernet MIIM PHY number (use 0 for Nexys4, 1 for MEGA65 r1 PCBs)

• MIIMREG Ethernet MIIM register number

• MIIMVLSB Ethernet MIIM register value (LSB)

• MIIMVMSB Ethernet MIIM register value (MSB)

• NOCRC Disable CRC check for received packets

• NOPROM Ethernet disable promiscuous mode

• RCENABLED (read only) Ethernet remote control enable status

• RST Write 0 to hold ethernet controller under reset

• RXBF Number of free receive buffers

• RXBLKD Indicate if ethernet RX is blocked until RX buffers freed

• RXPH Ethernet RX clock phase adjust

• RXQ Ethernet RX IRQ status

• RXQEN Enable ethernet RX IRQ

• STRM Enable streaming of CPU instruction stream or VIC-IV display on ethernet

• TXIDLE Ethernet transmit side is idle, i.e., a packet can be sent.

• TXPH Ethernet TX clock phase adjust

• TXQ Ethernet TX IRQ status

• TXQEN Enable ethernet TX IRQ

• TXRST Write 0 to hold ethernet controller transmit sub-system under reset

• TXSZLSB TX Packet size (low byte)

• TXSZMSB TX Packet size (high byte)

COMMAND register values

The following values can be written to the COMMAND register to perform the de-
scribed functions. In normal operation only the STARTTX command is required, for
example, by performing the following POKE:

PO KE 55 01 2 ,1

115

HEX DEC Signal Description

00 0 STOPTX

Immediately stop transmitting the
current ethernet frame. Will cause a
partially sent frame to be received,
most likely resulting in the loss of that
frame.

01 1 STARTTX Transmit packet
D0 208 RXNORMAL Disable the effects of RXONLYONE

D4 212 DEBUGVIC Select VIC-IV debug stream via
ethernet when $D6E1.3 is set

DC 220 DEBUGCPU Select CPU debug stream via ethernet
when $D6E1.3 is set

DE 222 RXONLYONE
Receive exactly one ethernet frame
only, and keep all signals states (for
debugging ethernet sub-system)

F1 241 FRAME1K

Select 1KiB frames for video/cpu
debug stream frames (for receivers that
do not support MTUs of greater than
2KiB)

F2 242 FRAME2K
Select 2KiB frames for video/cpu
debug stream frames, for optimal
performance.

EXAMPLE PROGRAMS
Example programs for the ethernet controller exist in imperfect states for in the
MEGA65 Core repository on github in the src/tests and src/examples directories.

If you wish to use the ethernet controller for TCP/IP traffic, you may wish to examine
the port of WeeIP to theMEGA65 at https://github.com/mega65/mega65-weeip. The
code that controls the ethernet controller is located in eth.c.

116

https://github.com/mega65/mega65-weeip

CHAPTER 8
45IO27 Multi-Function I/O

Controller
• Overview

• F011-compatible Floppy Controller

• SD card Controller and F011 Virtuali-

sation Functions

• Touch Panel Interface

• Audio Support Functions

• Miscellaneous I/O Functions

118

OVERVIEW
The 45IO27 is a multi-purpose I/O controller that incorporates the functions of the
C65’s F011 floppy controller, together with the MEGA65’s SD card controller inter-
face, and a number of other miscellaneous I/O functions.

Each of these major functions is covered in a separate section of this chapter.

F011-COMPATIBLE FLOPPY
CONTROLLER
The MEGA65 computer is one of the very few modern computers that still includes
first-class support for magnetic floppy drives. It includes a floppy controller that is
backwards compatible with the C65’s F011D floppy drive controller.

However, unlike the F011D, the MEGA65’s floppy disk controller supports HD and ED
media, and similar to the 1541 floppy drive, it also supports variable data rates, so
that a determined user could develop disk formats that store more data, include robust
copy protection schemes, or both.

Other disk formats, such as the GCR scheme used by the 1541 and 1571, or the
track-at-once MFM scheme used by the Amiga™ family of computers can also be
used, with varying amounts of effort. This is possible via the track DMA functionality
that is jointly provided by the 45IO27 and the 45GS02 processor. These two devices
work together to allow reading or writing raw flux signals from and to diskettes, thus
allowing the reading or reproduction of practically any disk format.

Also, for Amiga™ diskettes, there is experimental special circuitry in the 45IO27 to
ease the reading of these diskettes. Specifically, the 45IO27 is able to detect the
unique sector sync signals used on Amiga™ diskettes, and read the data sectors. How-
ever, it does not retrieve the 16 bytes per sector of operating-system specific data,
nor does it perform the de-interleaving of the separated vectors of odd and even bits
from the order that the Amiga™ computer writes them to disk. Use of this special cir-
cuitry is optional. That is, the track DMA functionality can also be used to read Amiga™
diskettes.

Multiple Drive Support

Like the C65’s F011 floppy drive controller, the 45IO27 supports up to 8 drives. The
first two of those drives, drive 0 and drive 1, are assumed to be connected to a stan-
dard 34-pin floppy cable, the same as used in standard PCs, i.e., with a twist in the
cable to allow the use of two unjumpered drives.

As is described in later sections, it is possible to switch drive 0 and drive 1’s position,
without having to change cabling. Similarly, either or both of the first two drives may

119

reference a real floppy drive, a D81 disk image stored on an attached SD card, or
redirected to the floppy drive virtualisation service, so that the sector accesses can
be handled by a connected computer, e.g., as part of a comfortable and efficient
cross-development environment.

The remaining six drives are supported only in conjunction with a future C1565-
compatible external drive port.

Buffered Sector Operations

The 45IO27 support two main modes of reading sectors from a disk: byte-by-byte,
and via a memory-mapped sector buffer.

The byte-by-byte mechanism consists of having a loop wait for the DRQ signal to be
asserted, and then reading the byte of data from the DATA register ($D087).

The memory-mapped sector buffer method consists of waiting for the BUSY flag to
clear, indicating that the entire sector has been read, and then directly accessing
the sector buffer located at $FFD6C00 – $FFD6DFF. Care should be taken to ensure
that the BUFSEL signal (bit 7 of $D689) is cleared, so that the floppy sector buffer is
visible, rather than the SD card sector buffer for programs other than the Hypervisor.
This is because only the Hypervisor has access to the full 4KB SD controller buffer
space: Normal programs see either the floppy sector buffer or the SD card sector
buffer repeated 8 times between $FFD6000 and $FFD6FFF.

Alternatively, the sector buffer can be mapped at $DE00 – $DFFF, i.e., in the 4KB I/O
area, by writing the $81 to the SD command register at $D680. This will hide any I/O
peripherals that are otherwise using this area, e.g., from cartridges, or REU emulation.
This function can be disabled again by writing $82 to the SD command register. As
with the normal sector buffer memory mapping at $FFD6xxx, the BUFSEL signal (bit 7
of $D689) affects whether the FDC or the SD card sector buffer is visible, for software
not running in Hypervisor mode. Note that if you use the Matrix Mode / serial monitor
interface to inspect the contents of the sector buffer, that this occurs in the Hypervisor
context, and so the BUFSEL signal will be ignored, and the full 4KB buffer will be visible.

The memory-mapped sector buffer has the advantage that it can be accessed via
DMA, allowing for very efficient copies. Also, it allows for loading a sector to occur
in the background, while your program gets on with more interesting things in the
meantime.

Reading Sectors from a Disk

There are several steps that you must follow in order to successfully read a sector from
a disk. If you follow these instructions, your code will work with both physical disks, as
well as D81 disk images that exist on the SD card:

• First, enable the motor and select the appropriate drive. The F011 supports
upto 8 physical drives, although it is rare for more than two to be physically
connected. To enable the motor, write $60 to $D080. You should then write a

120

SPINUP command ($20) to $D081, and wait for the BUSY flag (bit 7 of $D082)
to clear. The drive is now spinning at speed, and ready to service requests.

• Next, select the correct side of the disk by either setting or clearing the SIDE1
flag (bit 3 of $D080). This takes effect immediately.

• Third, use the step-in and step-out commands (writing $10 and $18 to $D081)
as required to move the head to the correct track. Again, after each command,
you should wait for the BUSY flag (bit 7 of $D082) to clear, before issuing the
next command.

Note that you can check if the head is at track 0 by checking the TRACK0 flag,
but there is no fool-proof way to know if you are on any other specific track. You
can use the registers at $D6A3 – $D6A5 to see the track, sector and side value
from the last sector header which passed under the head to make an informed
guess as to which track is currently selected. Note that this only works for real
disks, as disk images do not spin under the read head. Also note that it is possible
for tracks to contain sectors which purposely or accidently have incorrect track
numbers in the sector headers.

• Fourth, you need to load the desired track, sector and side number into the
TRACK, SECTOR and SIDE registers ($D084, $D085 and $D086, respectively).
The FDC is now primed ready to read a sector.

• Fifth, you should write an appropriate read command value into $D081. This will
normally be $40 (64). You then wait for the RDREQ signal ($D083, bit 7) to go
high, to indicate that the sector has been found. You then either wait for each
occassion when DRQ goes high, and read byte-by-byte in such a loop, or wait
for the BUSY flag to clear and the DRQ and EQ flags to go high, which indicates
that the complete sector has been read into the buffer.

Track Auto-Tune Function

The 45IO27 also includes a track “auto-tune” function, which is enabled by clearing
bit 7 of $D696. That function reads the sector headers to determine which track the
head is currently over, and steps the head in or out to try to get to the correct track.
Auto-tune is enabled by default.

Sector Skew and Target Any Mode

It is also worth noting that the TARGANY signal can be asserted to tell the floppy
controller to simply read the next sector that passes under the head. This applies only
when using real floppy disks, where it offers the considerable advantage of letting you
read the sectors in the order in which they exist on the disk. This allows you to read a
track at once, without having to wait for the index hole to pass by, or having to know
which sector will next pass under the head.

For example, the C65 DOS formats disks using a skew factor of 7, while PCs may
use a different skew-factor. If you don’t know the skew factor of the disk, you may

121

schedule the reading of the sectors on the track in a sub-optimal order. This can result
in transfer rates as low as 5 sectors per second, compared with the optimal case of
50 sectors per second. Thus with either correct sector order, or using the target any
mode, it is possible to read approximately two full tracks per second, i.e., two sides
× two tracks, or approximately 20KB/second on DD disks, or double that on HD disks,
at around 40KB/second. This compares very favourably with the C65 DOS loading
speed, which is typically nearer 1KB/sec in C64-mode.

Disk Layout and 1581 Logical Sectors

The 1581 disk format is unusual in that the physical sectors on the disk are a different
size of the size of the data blocks that it presents to the user. Specifically, the disks
use 512 byte sectors, while the 1581 (and C65) DOS present 256 byte data blocks.
Two blocks are stored in each physical sector. Also, the physical track numbers are
from 0 to 79, while the logical track numbers of the DOS are 1 to 80. Physical sectors
are also numbered from 1 to 10, while logical block numbers begin are 0 to 39.

This means that if you want to find a 1581 logical sector, you need to know which
physical sector it will be found in. To determine the physical sector that contains a
block, you first subtract one from the track number, and then divide the sector number
by two. Logical sectors 0 to 19 of each track are located in physical sectors 1 to 10
on the first side of the disk. Logical sectors 20 to 39 are located in physical sectors 1
to 10 on the reverse side of the disk.

Thus we can map a some logical track and sector t,s to the physical track, side and
sector as follows:

track = t− 1

sector = (s/2) + 1, IFFs < 20, ELSE = ((s− 20)/2) + 1

side = 0IFFsector < 20

It is also worth noting that the 45IO27 is capable of reading from tracks beyond track
80, provided that the disk drive is capable of this. Almost all 3.5 inch floppy drives
are capable of reading at least one extra track, as historically manufacturers of floppy
disks stored information about the disk on the 81st track. In our experience almost all
drives will also be able to access an 82nd track.

FD2000 Disks

The CMD™ FD2000™ high-density 3.5” disk drives for Commodore™ computers use
an unusual disk layout that is quite different from PCs: They use 10 sectors, the same
as on 720KB double-density (DD) disks, but double the sector size from 512 bytes to
1,024 bytes. The 45IO27 does not currently support these larger sectors for buffered
sector operation. At least read-only support is planned to be added via a core update
in the future. However, FD2000™ and FD4000™ diskettes can be read and written
using the track DMA functionality.

122

Also, for creating new diskettes, the 45IO27 does already support high-density disks
and drives, with much higher capacities than the FD2000 was able to support.

High-Density and Variable-Density Disks

The 45IO27 supports variable data rates, allowing the use of HD drives and media,
with a flexible approach to disk formats to support user experimentation, and the easy
manipulation of high-capacity software distribution formats.

You are really only limited by your imagination, available time, and the limited number
of people who are still interested in inserting a floppy disk into their computer!

The standard high-density (HD) disk format is “1.44MB”, using 18 sectors per track
over 80 tracks. This results in 80 tracks × 18 sectors × 2 sides = 2,880 sectors. As
each sector is 512 bytes, this corresponds to 1,440KB. This leads us into the interesting
wonderland of “floppy disk marketing megabytes,” a phenomena which long predates
SD card and hard drive manufacturers using 1,000,000 byte megabytes.

Curiously for floppy disks, the 1,024,000 byte “megabyte” was used, i.e., “1MB” = 1KB
× 1KB, that is a strange hybrid of binary and decimal conventions. Perhaps it was be-
cause the previous standard was 720KB, and they thought people would think it odd if
double 720KB was 1.41MB, and complain about the missing kilo-bytes. We will con-
tinue to use the 1,024KB = 1,000KB floppy disk marketing mega-byte for consistency
with this historical inconsistency.

However, HD floppy disks are fundamentally capable of holding much more than
1.44MB. For example, the FD2000 stored 1.6MB by using double-sized sectors to
squeeze the equivalent of 20 sectors per track, and the Amiga went further by using
track-at-once writing to fit 22 sectors per track. Both these formats used a constant
data rate over all tracks, and thus a constant number of sectors per track.

However, the circumference of the tracks on a 3.5” floppy disk vary quite a lot: The
inner track has a diameter of around 2.5cm, while the outside track is 1.6× longer.
The 1.44MB disk format is designed so that the data is reliably stored on those shorter
inner tracks. This means that we should be able to fit 160% more data on the outer-
most track compared with the inner-most track, subject to a number of terms and
conditions imposed by The Laws of Physics, the design of floppy drive electronics,
the quality of media being used and various other annoying things. Because of this
variability and uncertainty, the MEGA65’s floppy controller supports fully variable data
rate on a track-by-track basis.

Track Information Blocks

To support variable data rates, the 45GS27 supports the use of Track Information
Blocks (TIBs) that contain information on the data rate and encoding used on the track.
This allows users to experiment with various densities on various tracks, and yet have
the disks function automatically for buffered sector operations.

123

The Track Information Block is automatically created when using the automatic track
format function, but must be manually created if using unbuffered formatting. The TIB
itself consists of the following data:

1. 3× $A1 Sync bytes (written with clock byte $FB)

2. $65 MEGA65 Track Information Block marker (written with clock byte $FF, as are
all following bytes in the block)

3. The track number

4. The data rate divisor, in the same format as $D6A2, i.e., data rate = 40.5MHz /
value.

5. Track encoding information: Bit 7 = Track-at-once flag, 1 = no inter-sector gaps
(Amiga style), 0 = with inter-sector gaps (normal), Bit 6 = data encoding, 0 =
MFM, 1=RLL2,7. Other bits are reserved, and should be 0 when written.

6. Sector count, i.e., number of sectors on the track.

7. CRC byte 1, using the normal floppy disk CRC algorithm.

8. CRC byte 2, using the normal floppy disk CRC algorithm.

The Track Information Block is always written a the data rate for a 720KB Double-
Density disk, so that they can be present on any disk. Writing the Track Information
Block and start-of-track gaps at the DD data rate also ensures that at very high data
rates, the head still has sufficient time to switch to write mode, thus avoiding one of
the many problems that arise when writing data at very high data rates.

If formatting disks unbuffered, it is the programmer’s responsibility to switch the data
rate after having written the Track Information Block, and several more bytes to allow
the floppy encoding pipeline to flush out the last byte of the Track Information Block.
This is all automatically managed if using the automatic track formatting function.

The inclusion of the TIB allows users to play and explore the possibilities of different
data rates on different drives and media, while still being automatically readable in
all MEGA65s, because the TIB allows the controller to switch to the correct data rate
and encoding. It is likely that over time somewhat standardised formats will develop,
quite likely in the range of 2MB to 3.5MB – thus approaching the capacity of ED media
in ED drives, without the need for those drives or media.

Formatting Disks

Formatting disks is now possible with the 45IO27, either unbuffered or fully-automatic.
To format a track issue one of the following commands to $D081:

• $A0 – Automatic format, with inter-sector gaps, and write pre-compensation
disabled.

• $A1 – Manual format, write-precompensation disabled.

124

• $A4 – Automatic format, with inter-sector gaps, and write pre-compensation
enable.

• $A5 – Manual format, write-precompensation enabled.

• $A8 – Automatic format, Amiga-style track-at-once, and write pre-
compensation disabled.

• $AC – Automatic format, Amiga-style track-at-once, and write pre-
compensation enable.

Manual formatting is not recommended, unless mastering track-at-once formatted
disks for software distribution, because of the relative complexity of doing so. Also,
at the higher data rates, bytes have to be delivered to the floppy controller as often
as every 20 cycles, which requires considerable care when writing the format routine.
For more information on manual formatting tracks, refer to the C64 Specifications
Manual or the C65 ROM DOS source code, for examples of manual formatting.

The automatic modes, in contrast, format a track with a single command, and are thus
much easier to use, and are recommended for general use. Write pre-compensation
should normally be enabled, as it is required at higher data rates, and does not cause
problems at lower data rates.

Write Pre-Compensation

Write pre-compensation is a family of algorithms used when writing high data-rate
signals to floppy disks. It is used to anticipate and cancel out the predictable com-
ponent of timing variation of magnetic recording. There are a variety of sources of
this timing variation, which have been the subject of PhD theses, and a lot of propri-
etary research by hard drive manufacturers. What is important for us to understand
is that adjacent pulses (really magnetic inversions) get pushed together, if they are
surrounded by longer pulses, or tend to spread apart if surrounded by shorter pulses.

There are also other fascinatingly complex and difficult to predict factors, that cause
things such as the “negative shift of mid-length pulses”, “inverse F-distribution of pulse
arrival times” and goodness knows what else. But we shall leave those to the hard
drive manufacturers. We limit ourselves to the data pattern induced effect described
in the previous paragraph.

The 45GS27 supports two tunable coefficients for small and large corrections to this,
which are used with an internal look-up table. However, this is all automatically han-
dled if you enable write pre-compensation. This allows data rates that much more
closely approach the expected limit of HD media, although due to the other horrors of
magnetic media recording alluded to above, the actual limit is not reached.

Buffered Sector Writing

The 45IO27 can write to disk images that are located on the SD card, or when using
virtualised disk access.

125

To write a sector, you follow a similar process to reading, except that you write $84 to
the command byte instead of $40. The $80 indicates a write, and the $04 activates
write-precompensation. This is important when writing to real floppy disks, especially
HD and ED disks. Write-precompensation causes bits to be written slightly early or
slightly late, using an algorithm that models how the magnetic domains on a disk tend
to move after being written.

If you do not wish to use the sector buffer, but instead provide each byte one at a
time during the write operation, you must add $01 to the command code. However,
this is not recommended on the MEGA65, because when writing to the SD card or
using virtualised disk images the entire sector operation can happen instantaneously
from the perspective of your program. This means that it is not possible to supply data
reliably when in this mode. Thus apart from being less convenient, it is also less reliable.

Once a write operation has been triggered, the DRQ signal indicates when you should
provide the next byte if performing a byte-by-byte write. Otherwise, it is assumed
that you will have pre-filled the sector buffer with the complete 512 bytes of data
required.

To write to disks that contain Track Information Blocks, you should first wait for the TIB
to be read when changing tracks. This is done by waiting for $D6A9 (sectors per track
from the TIB) to contain a non-zero value.

Floppy Track DMA

As previously described, the 45IO27 connects to the 45GS02 CPU, and specifically
its internal DMA controller, to provide a simple mechanism for reading and writing the
raw magnetic flux transitions of floppy disks. In addition to allowing writing softwar
that can read any possible disk format, it also allows for the writing and duplication
of almost any disk format. I say almost, because it is possible for diskettes to be
written using special machines that have capabilities that exceed that of the floppy
drive mechanism of the MEGA65. Fat tracks is one example of this. Another example
is where the magnetic flux transitions are placed and/or spaced in a manner that
prevents a normal floppy drive from reproducing them exactly.

Using Floppy Track DMA

The following DMA options tell the DMAgic controller to read or write raw floppy flux
values instead of memory location. In this mode, the DMAgic controller waits for each
successive pulse interval to be received from the 45IO27. Thus the data that it reads
(or writes) is the duration between each successive flux inversion, in units of 50ns.

• $0D - Write raw flux intervals. Set DMA to COPY mode to use this.

• $0E - Read raw flux intervals, ignoring implausibly long intervals. Set DMA mode
to FILL to use this.

• $0F - Read raw flux intervals, returning implausibly long intervals as $FF. Set
DMA mode to FILL to use this.

126

See floppytest.c in the mega65-tools repository of the MEGA65 github site at https:
//github.com/mega65-tools for example code that reads tracks using this function-
ality.

Understanding the Limitations of Floppy Drives

When writing raw flux transitions, care must be taken to understand the limitations of
standard floppy drives. There are three key factors to be considered:

• No two transitions can be placed too close togther. The drive will simply refuse to
write them if they are below some distance apart. Also, even if you do manage
to write them, the read filtering circuitry of the floppy drive will merge pulses
that are too close together.

• No two transitions can be placed too far apart. In this case, the drive will happily
write them, but the read filter circuitry will start getting worried if it doesn’t see a
pulse for a while, and will start thinking that the background noise is real signals,
and introduce false pulses into the read stream that are not really there on the
disk.

• Magnetic pulses move on the disk when you write them! The physics behind this is
really complex, and depends on the sequence of distances between successive
pulses, the data that was previously written to the track, and, it feels like, also
the phase of the moon and colour of your underpants. There are some general
rules of thumb that can be used at “typical” pulse distance intervals to partially
mitigate this. These rules are called Write Pre-compensation, where the pulses
are moved before writing, so that after writing they end up in the right place.
The 45IO27 already implements write pre-compensation for HD formatted disks.
The effects of moving pulses is especially pronounced for pulses that are closer
together.

• The higher numbered tracks are shorter. This means that the pulses have to be
further apart in time, to be the same distance apart on a track. This is why the
1541 fits less data on higher numbered tracks. This is especially pronounced at
higher data rates, where the “magnetic resolution” of the disks becomes an issue.
To make matters worse, the strength of the magnetic signals is proportional to
the speed of the track going past. This means for the higher numbered tracks
that are nearer the middle of the disk, not only is the “magnetic resolution” lower
due to the shorter tracks, the linear velocity of the disk under the head is also
lower, resulting in weaker signals.

It is the combination of these factors that will tend to limit how densly you can pack
data onto a floppy disk – together of course with the quality and condition of the
diskette and disk drive. The MEGA65’s HD+ disk formats that are able to fit around
3MiB on a standard 1.44MiB diskette take special care to manage these factors. This
is why those formats use many different density zones, as well as using RLL27 encoding
instead of MFM encoding, because it increases the minimum distance between pulses.

127

https://github.com/mega65-tools
https://github.com/mega65-tools

F011 Floppy Controller Registers

The following are the set of F011 compatibility registers of the 45IO47. Note that
registers related to the use of SD card based storage are found in the corresponding
section below.

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D080 53376 IRQ LED MOTOR SWAP SIDE DS
D081 53377 WRCMD RDCMD FREE STEP DIR ALGO ALT NOBUF
D082 53378 BUSY DRQ EQ RNF CRC LOST PROT TK0
D083 53379 RDREQ WTREQ RUN WGATE DISKIN INDEX IRQ DSKCHG
D084 53380 TRACK
D085 53381 SECTOR
D086 53382 SIDE
D087 53383 DATA
D088 53384 CLOCK
D089 53385 STEP
D08A 53386 PCODE

• ALGO Selects reading and writing algorithm (currently ignored).

• ALT Selects alternate DPLL read recovery method (not implemented)

• BUSY F011 FDC busy flag (command is being executed) (read only)

• CLOCK Set or read the clock pattern to be used when writing address and data
marks. Should normally be left $FF

• COMMAND F011 FDC command register

• CRC F011 FDC CRC check failure flag (read only)

• DATA F011 FDC data register (read/write) for accessing the floppy controller’s
512 byte sector buffer

• DIR Sets the stepping direction (inward vs

• DISKIN F011 Disk sense (read only)

• DRQ F011 FDC DRQ flag (one or more bytes of data are ready) (read only)

• DS Drive select (0 to 7). Internal drive is 0. Second floppy drive on internal cable
is 1. Other values reserved for C1565 external drive interface.

• DSKCHG F011 disk change sense (read only)

• EQ F011 FDC CPU and disk pointers to sector buffer are equal, indicating that
the sector buffer is either full or empty. (read only)

• FREE Command is a free-format (low level) operation

• INDEX F011 Index hole sense (read only)

128

• IRQ The floppy controller has generated an interrupt (read only). Note that in-
terrupts are not currently implemented on the 45GS27.

• LED Drive LED blinks when set

• LOST F011 LOST flag (data was lost during transfer, i.e., CPU did not read data
fast enough) (read only)

• MOTOR Activates drive motor and LED (unless LED signal is also set, causing the
drive LED to blink)

• NOBUF Reset the sector buffer read/write pointers

• PCODE (Read only) returns the protection code of the most recently read sector.
Was intended for rudimentary copy protection. Not implemented.

• PROT F011 Disk write protect flag (read only)

• RDCMD Command is a read operation if set

• RDREQ F011 Read Request flag, i.e., the requested sector was found during a
read operation (read only)

• RNF F011 FDC Request Not Found (RNF), i.e., a sector read or write operation
did not find the requested sector (read only)

• RUN F011 Successive match. A synonym of RDREQ on the 45IO47 (read only)

• SECTOR F011 FDC sector selection register

• SIDE Directly controls the SIDE signal to the floppy drive, i.e., selecting which
side of the media is active.

• STEP Writing 1 causes the head to step in the indicated direction

• SWAP Swap upper and lower halves of data buffer (i.e. invert bit 8 of the sector
buffer)

• TK0 F011 Head is over track 0 flag (read only)

• TRACK F011 FDC track selection register

• WGATE F011 write gate flag. Indicates that the drive is currently writing to
media. Bad things may happen if a write transaction is aborted (read only)

• WRCMD Command is a write operation if set

• WTREQ F011 Write Request flag, i.e., the requested sector was found during a
write operation (read only)

The following registers apply to the 45IO27 only, i.e., are MEGA65 specific:

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

D6A0 54944 DENSITY DBGMO-
TORA

DBGMO-
TORA DBGDIR DBGDIR DBGW-

DATA
DBGW-
GATE

DBGW-
GATE

continued …

129

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D6A2 54946 DATARATE

• DATARATE Set number of bus cycles per floppy magnetic interval (decrease to
increase data rate)

• DBGDIR Control floppy drive STEPDIR line

• DBGMOTORA Control floppy drive MOTOR line

• DBGWDATA Control floppy drive WDATA line

• DBGWGATE Control floppy drive WGATE line

• DENSITY Control floppy drive density select line

SD CARD CONTROLLER AND F011
VIRTUALISATION FUNCTIONS
For those situations where you do not wish to use real floppy disks, the 45IO27 supports
two complementary alternative modes:

• SD card Based Disk Image Access.

• Virtualised Disk Image Access.

This is in addition to providing direct access to a dual-bus SD card interface.

SD card Based Disk Image Access

The 45IO27 is both a floppy drive and SD card controller. This enables it to trans-
parently allow access to D81 disk images stored on the SD card. Further, because
the controller is combined, it is possible to still have the floppy drive step and spin as
though it were being used, providing considerable atmosphere and sense of realism,
even when using disk images.

The 45IO27 supports both 800KB standard D81 disk images, as well as 64MB “MEGA
Images”. While an operating system may impose restrictions based on the name of
a file, the 45IO27 is blind to these requirements. Instead, it requires only that a
contiguous 800KB or 64MB of the SD card is used to contain a disk image.

When a disk image is enabled, the corresponding set of sectors on the SD card are
effectively placed under user control, and the operating system is no longer able to
prevent the reading or writing of any of those sectors. Thus you should never enable
access to an image that is shorter than the required size, as it will otherwise allow the
user to unwittingly or maliciously access and/or modify data that is not part of the
image file.

130

For the same reason, only the hypervisor can change the sector number where a disk
image starts (the D?STARTSEC? signals), or allow the use of disk images instead of the
real floppy drive (USEREAL0 and USEREAL1 signals). Once the Hypervisor has set the
start sector of a disk image, and cleared the USEREAL0 or USEREAL1 signal, the user
can still controll whether an access will go to the real floppy drive or to the disk image
by respectively clearing or setting the appropriate signal. For drive 0, this is D0IMG,
and for drive 1, it is D1IMG.

There are also signals to control whether a disk image is an 800KB D81 image or a
64MB MEGA Disk image, and whether a disk image is present, and whether it is write
protected. These are all located in the $D68B register. Because of the ability of
manipulation of these registers to corrupt or improperly access data, these signals are
all read-only, except from within the hypervisor.

The following table lists the registers that are used to control access to disk images
resident on the SD card:

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D68A 54922 D1D64 D0D64 –
D68B 54923 D1MD D0MD D1WP D1P D1IMG D0WP D0P D0IMG
D68C 54924 D0STARTSEC0
D68D 54925 D0STARTSEC1
D68E 54926 D0STARTSEC2
D68F 54927 D0STARTSEC3
D690 54928 D1STARTSEC0
D691 54929 D1STARTSEC1
D692 54930 D1STARTSEC2
D693 54931 D1STARTSEC3

D6A1 54945 – SILENT USE-
REAL1 TARGANY USE-

REAL0

• D0D64 F011 drive 0 disk image is D64 mega image if set (otherwise 800KiB
1581 or D65 image)

• D0IMG F011 drive 0 use disk image if set, otherwise use real floppy drive.

• D0MD F011 drive 0 disk image is D65 image if set (otherwise 800KiB 1581
image)

• D0P F011 drive 0 media present

• D0STARTSEC0 F011 drive 0 disk image address on SD card (LSB)

• D0STARTSEC1 F011 drive 0 disk image address on SD card (2nd byte)

• D0STARTSEC2 F011 drive 0 disk image address on SD card (3rd byte)

• D0STARTSEC3 F011 drive 0 disk image address on SD card (MSB)

• D0WP Write enable F011 drive 0

131

• D1D64 F011 drive 1 disk image is D64 image if set (otherwise 800KiB 1581 or
D65 image)

• D1IMG F011 drive 1 use disk image if set, otherwise use real floppy drive.

• D1MD F011 drive 1 disk image is D65 image if set (otherwise 800KiB 1581
image)

• D1P F011 drive 1 media present

• D1STARTSEC0 F011 drive 1 disk image address on SD card (LSB)

• D1STARTSEC1 F011 drive 1 disk image address on SD card (2nd byte)

• D1STARTSEC2 F011 drive 1 disk image address on SD card (3rd byte)

• D1STARTSEC3 F011 drive 1 disk image address on SD card (MSB)

• D1WP Write enable F011 drive 1

• SILENT Disable floppy spinning and tracking for SD card operations.

• TARGANY Read next sector under head if set, ignoring the requested side, track
and sector number.

• USEREAL0 Use real floppy drive for drive 0 if set (read-only, except for from
hypervisor)

• USEREAL1 Use real floppy drive for drive 1 if set (read-only, except for from
hypervisor)

F011 Virtualisation

In addition to allowing automatic read andwrite access to SD card based D81 images,
it is possible to connect a program to the serial monitor interface that provides and
accepts data as though it were the floppy disk.

This is commonly used in a cross-development environment, where you wish to fre-
quently modify a disk image that is used by a program you are developing – without
the need to continually push new versions of the disk image on the MEGA65’s SD card
first. It also has the added benefit that it allows you to easily visualise which sec-
tors are being read from and written to, which can help speed up development and
debugging of your program.

This function operates together with the MEGA65’s Hypervisor by triggering hyperrupts
(that is, interrupts that activate the Hypervisor). There is then special code in the
Hypervisor that communicates with the m65 program via the serial monitor interface.

If that all sounds rather complex, all you need to know is that to use this function,
you run the m65 utility with arguments like -d image.d81. This should automatically
establish the link with the MEGA65. If the BASIC interprettor stops responding, press
the reset button (not the power switch) on the left-hand side of your MEGA65, and
it should return to the BASIC’s READY. prompt – and if your supplied disk image has a
C65 auto-boot function, then it should automatically start booting.

132

This function works very well if the host computer runs Linux, and will allow loading at
a speed of around 60KB per second. However, it may be much slower on Windows or
Apple OSX-based systems.

Of course to use this, you will also need an interface module and/or cable to connect
your cross-development system to the MEGA65’s serial monitor interface. This is most
easily done using a Trenz TE0790-03 JTAG adapter and mini-USB cable.

More information on using this interface and the m65 tool can be found in the MEGA65
Book, Data Transfer and Debugging Tools (chapter 16).

Dual-Bus SD card Controller

The 45IO27 contains a high-speed dual-bus SD card controller. This controller oper-
ates in SPI x1 mode at a clock speed of 20MHz, providing a maximum throughput of
approximately 2MB/sec. The quality of the SD card makes a signficant difference to
performance, with some cards routinely delivering 1.7MB/sec, while others 1MB/sec
or less. Generally speaking, newer cards marketted as being suitable for video record-
ing perform better. The controller supports SDHC cards, and has experimental support
for SDXC cards. Legacy SD cards with a capacity of 2GB or less are not supported,
as these use a different addressing mode.

The SD controller itself is very simple to drive: Supply the sector number in $D861-
$D684, and then issue a read or write command to the command register ($D680).
The SD controller supports only sector-based buffered operations, using the sector
buffer. In hypervisor mode, the sector buffer is located at $FFD6E00 – $FFD6FFF,
while when the computer is in normal operating mode, the SD card and the floppy
controller share a single address for both the floppy drive and SD card sector buffers.
Which buffer is visible at that address is dictated by the BUFSEL signal. If it is 1, then
the SD card buffer is visible, while if it is 0, then the floppy drive sector buffer is visible.
See also Sub-section 8 on page 120 for further discussion on the precise behaviour
of this buffer with regard to normal mode versus Hypervisor mode, and how it can also
be mapped at $DE00.

Write Gate

When writing a sector, you must, however, first open the “write gate”. This is a mech-
anism to prevent accidental corruption of data on the SD card, as it requires two
different values to be written to the command register ($D680) in quick succession:
You have approximately 1 milli second after opening the write gate to command the
write, before the write gate effectively closes again, write-protecting the SD card until
the write gate is opened again. There are two different write gates: One for the mas-
ter boot record (sector 0), and the other for all other sectors, both of which are listed
in the command table below. This is designed to provide additional protection to the
very important master boot record sector against programs accidentally calculating
sector 0 as the target for an ordinary write.

133

Fill Mode

Where you wish to fill sectors with a constant value, the 45IO27 supports a mode for
this, so that you do not need to overwrite the contents of the sector buffer. This is
activated by placing the desired fill value into the FILLVAL register ($D686), and then
issuing the enable fill mode command ($83), performing the sector write operations,
and then issuing the disable fill mode command ($84).

Selecting Among Multiple SD cards

The controller supports two SD card interfaces, and it is possible to have a card in both
at the same time. However, each card needs to be reset and commanded separately.
Only one card can be commanded at a time. That said, it is possible to reset each
card once, and then switch between the cards to perform individual operations.

To select the first SD card slot, write $C0 to the SD Controller Command Register
($D680). To select the second SD card slot, write $C1 instead.

SD Controller Command Table

The SD controller supports the following commands that can be written to the com-
mand register at $D680:

Command Function

$00 (0) Place SD card under reset (deprecated. Use
command $10 instead)

$01 (1) Release SD card from reset
$02 (2) Read a sector from the SD card
$03 (3) Write a single sector to the SD card

$04 (4) Write the first sector of a multi-sector write to the SD
card

$05 (5) Write a subsequent sector of a multi-sector write to
the SD card

$06 (6) Write the final sector of a multi-sector write to the
SD card

$0C (12) Request flush of SD card write buffers (experimental)
$0E (14) Pull SD handshake line low (debug only)
$0F (15) Pull SD handshake line high (debug only)

$10 (16) Place SD card under reset with flags set (preferred
method)

$11 (17) Release SD card from reset (alternate method)

$40 (64) Clear the SDHC/SDXC flag, selecting legacy SD
card mode (deprecated)

$41 (65) Set the SDHC/SDXC mode flag

$44 (68) End force clearing of SD card state machine error
flag

continued …

134

…continued
Command Function

$45 (69) Begin force clearing of SD card state machine error
flag

$4D (77) Open write-gate to sector 0 (master boot record) for
approximately 1 milli-second

$57 (87) Open write-gate for all sectors > 0 for approximately
1 milli-second

$81 (129) Enable mapping of the SD/FDC sector buffer at
$DE00 – $DFFF

$82 (130) Disable mapping of the SD/FDC sector buffer at
$DE00 – $DFFF

$83 (131) Enable SD card Fill Mode
$84 (132) Disable SD card Fill Mode
$C0 (192) Select SD card Slot 0
$C1 (193) Select SD card Slot 1

Note that the hypervisor can enable or disable direct access to the SD controller. The
hypervisor operating system may provide a mechanism for requesting permission to
access the SD card controller, e.g., for disk management utilities.

The SD card controller registers are as follows:

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D680 54912 CMDANDSTAT
D681 54913 SECTOR0
D682 54914 SECTOR1
D683 54915 SECTOR2
D684 54916 SECTOR3
D686 54918 FILLVAL
D68A 54922 – VFDC1 VFDC0 VICIII CDC00

D6AE 54958 FDCTIBEN FDC-
2XSEL

FDC-
VARSPD

AUTO-
2XSEL FDCENC

D6AF 54959 – VLOST VDRQ VRNF VEQINH VW-
FOUND VRFOUND

• AUTO2XSEL Automatically select DD or HD decoder for last sector display

• CDC00 (read only) Set if colour RAM at $DC00

• CMDANDSTAT SD controller status/command

• FDC2XSEL Select HD decoder for last sector display

• FDCENC Select floppy encoding (0=MFM, 1=RLL2,7, F=Raw encoding)

• FDCTIBEN Enable use of Track Info Block settings

135

• FDCVARSPD Enable automatic variable speed selection for floppy controller us-
ing Track Information Blocks on MEGA65 HD floppies

• FILLVAL WRITE ONLY set fill byte for use in fill mode, instead of SD buffer data

• SECTOR0 SD controller SD sector address (LSB)

• SECTOR1 SD controller SD sector address (2nd byte)

• SECTOR2 SD controller SD sector address (3rd byte)

• SECTOR3 SD controller SD sector address (MSB)

• VDRQ Manually set f011_drq signal (indented for virtual F011 mode only)

• VEQINH Manually set f011_eq_inhibit signal (indented for virtual F011 mode
only)

• VFDC0 (read only) Set if drive 0 is virtualised (sectors delivered via serial monitor
interface)

• VFDC1 (read only) Set if drive 1 is virtualised (sectors delivered via serial monitor
interface)

• VICIII (read only) Set if VIC-IV or ethernet IO bank visible

• VLOST Manually set f011_lost signal (indented for virtual F011 mode only)

• VRFOUND Manually set f011_rsector_found signal (indented for virtual F011
mode only)

• VRNF Manually set f011_rnf signal (indented for virtual F011 mode only)

• VWFOUND Manually set f011_wsector_found signal (indented for virtual F011
mode only)

TOUCH PANEL INTERFACE
Some MEGA65 variants include an LCD touch panel, primarily the MEGAphone hand-
held version of the MEGA65. The touch interface supports the detection of two simul-
taneous touch events. Some variants may also support gesture detection, however,
this is still very experimental.

The touch detection interface that is contained in the 45IO27 is complemented by
the on-screen-keyboard interface of the 4551 UART and GPIO controller. Refer to
section 6 for further information. Of particular relevance are bit 7 of the registers
$D615 – $D617 which allow activating the on-screen keyboard interface, selecting
whether the on-screen keyboard is placed in the upper or lower portion of the screen,
and whether the primary or secondary on-screen keyboard is displayed.

Direct connections between the 4551 and the 45IO27 combine information about
any currently displayed on-screen keyboard and the touch interface controller, al-

136

lowing synthetic keyboard events to be automatically triggered when the on-screen
keyboard portion of the touch interface is pressed. This allows the touch interface
to be used to drive the on-screen keyboard without requiring any support from user
programs. This works even when the on-screen keyboard is moving during activation
or transitioning between the top and bottom of the screen.

As touch interfaces can require calibration, the 45IO27 allows for a linear transfor-
mation of both the X and Y coordinates of a touch event. Specifically, there are scale
(TCHXSCALE and TCHYSCALE) and offset registers (TCHXDELTA and TCHYDELTA) that
provide for this transformation. It is also possible to flip the touch screen coordinates
in either or both the X and Y axes. These calibration registers also affect the operation
of the on-screen keyboard.

It should also be noted that some touch interfaces do not have constant horizontal or
vertical resolution. For example, some panels have a low horizontal resolution region
in the middle of the panel, which can require some care to accommodate.

To detect the primary touch event, the TOUCH1XLSB, TOUCH1XMSB, TOUCH1YLSB,
TOUCH1YMSB registers can be read. Similar registers exist for the 2nd touch event:
TOUCH2XLSB, TOUCH2XMSB, TOUCH2YLSB, TOUCH2YMSB. Each touch event has a
signle bit flag that indicates whether the touch event is currently valid: the EV1 and
EV2 bits of the register $D6B0. There are also corresponding bit-fields that indicate
whether a given touch event has been made or released, allowing the detection of
when a finger both makes and breaks contact with the screen. The UPDN1 and UPDN2
signals provide this information. Binary values of 01 and 10, respectively indicate if
the finger has been removed or pressed against the touch panel. Values of 00 and
11 mean that a finger is either being held or not being held against the touch panel.

The primary touch event is also fed into the lightpen input of the VIC-IV, and can be
detected using the normal light pen registers of the VIC-IV.

The registers for the touch panel interface are as follows:

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D6B0 54960 YINV XINV UPDN2 UPDN1 EV2 EV1
D6B1 54961 CALXSCALELSB
D6B2 54962 CALXSCALEMSB
D6B3 54963 CALYSCALELSB
D6B4 54964 CALYSCALEMSB
D6B5 54965 CALXDELTALSB
D6B7 54967 CALYDELTALSB
D6B8 54968 CALYDELTAMSB
D6B9 54969 TOUCH1XLSB
D6BA 54970 TOUCH1YLSB
D6BB 54971 – TOUCH1YMSB – TOUCH1XMSB
D6BC 54972 TOUCH2XLSB
D6BD 54973 TOUCH2YLSB

continued …

137

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D6BE 54974 – TOUCH2YMSB – TOUCH2XMSB
D6C0 54976 GESTUREID GESTUREDIR

• CALXDELTALSB Touch pad X delta LSB

• CALXSCALELSB Touch pad X scaling LSB

• CALXSCALEMSB Touch pad X scaling MSB

• CALYDELTALSB Touch pad Y delta LSB

• CALYDELTAMSB Touch pad Y delta MSB

• CALYSCALELSB Touch pad Y scaling LSB

• CALYSCALEMSB Touch pad Y scaling MSB

• EV1 Touch event 1 is valid

• EV2 Touch event 2 is valid

• GESTUREDIR Touch pad gesture directions (left,right,up,down)

• GESTUREID Touch pad gesture ID

• TOUCH1XLSB Touch pad touch #1 X LSB

• TOUCH1XMSB Touch pad touch #1 X MSBs

• TOUCH1YLSB Touch pad touch #1 Y LSB

• TOUCH1YMSB Touch pad touch #1 Y MSBs

• TOUCH2XLSB Touch pad touch #2 X LSB

• TOUCH2XMSB Touch pad touch #2 X MSBs

• TOUCH2YLSB Touch pad touch #2 Y LSB

• TOUCH2YMSB Touch pad touch #2 Y MSBs

• UPDN1 Touch event 1 up/down state

• UPDN2 Touch event 2 up/down state

• XINV Invert horizontal axis

• YINV Invert vertical axis

AUDIO SUPPORT FUNCTIONS
The 45IO27 provides the primary interface into the MEGA65’s full cross-bar audio
mixer. This includes the interface for reading or modifying the mixer co-efficients, as

138

well as accessing the mixer feedback registers, and setting the 16-bit digital sample
values that are two of the input channels into the audio mixer.

The audio mixer consists of 128 coefficients, each of which is 16 bits. Each audio out-
put channel, e.g., left speaker, right speaker, left headphone, right headphone, cellular
modem 1 (MEGAphone models only) and so on, are generated by taking each of the
audio input channels, multiplying them by the appropriate coefficient, and adding it
to the total output of the audio output channel.

Because each audio output channel has its own set of coefficients that are applied to
all of the audio input channels, this means that it is possible to produce totally different
audio out each audio channel: For example, it is possible to play your favourite quadro-
phonic SID music out of the headphones while rick-rolling passers by with Amiga-style
MOD audio. This is why the audio mixer is refered to as a full cross-bar mixer, be-
cause there are no restrictions on how you mix each audio output channel. In this
regard, it is very similar to a full-function audio desk, allowing different mixing levels
for different speakers.

Because the audio coefficients are 16 bits each, each one is formed using two suc-
cessive bytes of the audio co-efficient space. Changes to the audio coefficients take
effect immediately, so care should be taken when changing coefficients to avoid au-
dible clicks and pops. Also, you must allow 32 cycles to elapse before changing the
selected audio coefficient, as otherwise the change may be discarded if the audio
mixer accumulator has not had time to re-visit that coefficient.

The audio sources on the MEGA65 and MEGAphone devices are as follows:

Input Channel
ID Connection

$0 (0) Left SIDs
$1 (1) Right SIDs
$2 (2) Modem Bay 1 (MEGAphone only)
$3 (3) Modem Bay 2 (MEGAphone only)
$4 (4) Bluetooth™ Left
$5 (5) Bluetooth™ Right
$6 (6) Headphone Interface 1
$7 (7) Headphone Interface 2
$8 (8) Digital audio Left
$9 (9) Digital audio Right
$A (10) MEMs Microphone 0 (Nexys4 and MEGAphone only)
$B (11) MEMs Microphone 1 (MEGAphone only)
$C (12) MEMs Microphone 2 (MEGAphone only)
$D (13) MEMs Microphone 3 (MEGAphone only)

$E (14) Headphone jack microphone (Nexys4 and
MEGAphone only)

$F (15) OPL-compatible FM audio (shares co-efficient with
input 14)

139

The OPL-compatible FM audio which is on source 15 is controlled by the coefficient for
source 14. This is because the coefficient for source 15 provides the master volume
level for each output. The OPL-compatible FM audio device is not currently functional
in the MEGA65 core.

The audio cross-bar mixer supports the following eight output channels:

Output
Channel ID Connection

$0 (0)
Left Primary Speaker (digital audio on MEGA65
R2/R3, physical speaker on MEGAphone, headphone
jack audio on Nexys4)

$1 (1)
Right Primary Speaker (digital audio on MEGA65
R2/R3, physical speaker on MEGAphone, headphone
jack audio on Nexys4)

$2 (2) Modem Bay 1 audio output (MEGAphone only)
$3 (3) Modem Bay 2 audio output (MEGAphone only)
$4 (4) Bluetooth Left Audio (MEGAphone only)
$5 (5) Bluetooth Right Audio (MEGAphone only)

$6 (6)
Headphone Left output (MEGA65 R2/R3 and
MEGAphone only. On Nexys4 boards the primary
speaker drives the 3.5mm jack)

$7 (7)
Headphone Right output (MEGA65 R2/R3 and
MEGAphone only. On Nexys4 boards the primary
speaker drives the 3.5mm jack)

To determine the coefficient register number for a given source and output, multiply
the output number by 32 and multiply the source number by 2. This will be the register
number for the LSB of the 16-bit coefficient. The MSB will be the next register. For
example, to set the coefficient of the right SIDs to the 2nd modem bay audio output,
the coefficient would be 32× 3 + 1× 2 = 96 + 2 = 98.

Other Audio Features

The audio sub-system supports several other features, that are currently pending fur-
ther documentation.

Mixer Feedback Registers

These registers allow the processor to access the mixed audio for a particular output
channel. This can be used to implement displays of audio waveforms, or implement
certain audio-effects, such as reverb.

140

8/16 Bit Stereo Digital Audio Registers

Registers are provided for injecting 8 or 16 bit audio samples directly into dedicated
input channels of the audio mixer, providing a simple way to play digital audio data.
This is particularly useful for procedurally generated audio data. For recorded sam-
ples, it is generally simpler and better to use the Audio DMA functionality that fully
automates the play-back of digital audio. Audio DMA is especially heplful at higher
sample rates, as it reduces the burden on the CPU, and greatly reduces sample jitter.

Pulse Width vs Pulse Density Modulation

For models of the MEGA65 that use a 1-bit over-sampled output for audio (upto and
including the R3/R3A model), it is possible to select between these two different over-
sampling methods. Both have similar performance, but users may prefer one over the
other. This choice has no effect on the R4 or newer models that use a dedicated
audio DAC to feed audio to the 3.5mm audio jack, and that has intrinsically better
audio quality. For owners of older models, the planned internal expansion board for
the MEGA65 may include an improved audio output circuit, depending on the final
configuration of that board. No timeline is currently available for the availability of
this board. In the interim, use of HDMI audio output is the recommended solution, as
the audio is encoded digitally over the HDMI cable.

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D6F4 55028 MIXREGSEL
D6F5 55029 MIXREGDATA
D6F8 55032 DIGILLSB
D6F9 55033 DIGILMSB
D6FA 55034 DIGIRLSB
D6FB 55035 DIGIRMSB
D6FC 55036 READBACKLSB
D6FD 55037 READBACKMSB
D711 55057 – PWMPDM –

• DIGILEFTLSB Digital audio, left channel, LSB

• DIGILEFTMSB Digital audio, left channel, MSB

• DIGILLSB 16-bit digital audio out (left LSB)

• DIGILMSB 16-bit digital audio out (left MSB)

• DIGIRIGHTLSB Digital audio, left channel, LSB

• DIGIRIGHTMSB Digital audio, left channel, MSB

• DIGIRLSB 16-bit digital audio out (right LSB)

• DIGIRMSB 16-bit digital audio out (right MSB)

• MIXREGDATA Audio Mixer register read port

141

• MIXREGSEL Audio Mixer register select

• PWMPDM PWM/PDM audio encoding select

• READBACKLSB audio read-back LSB (source selected by $D6F4)

• READBACKMSB audio read-back MSB (source selected by $D6F4)

MISCELLANEOUS I/O FUNCTIONS

142

CHAPTER 9
4541 Serial Bus Controller

• Overview

• Features of the 4541

• Theory of Operation

• Examples

• Command Reference

• Register Table

• Serial Bus Timing

• Optional Integrated Data-Logger

144

OVERVIEW
The 4541 is a Commodore™ serial peripheral bus compatible bus controller, that
greatly reduces the effort required to communicate with devices on this bus.

FEATURES OF THE 4541
Supports Enhanced Serial Protocol Variants

The 4541 supports the JiffyDOS™ extensions to this protocol, that allow data transfers
approximately 10× faster than using the original protocol. It is also expected that
a future revision of the 4541 will support Commodore’s fast serial protocol, that is
present in the 1571 and 1581 disk drives.

Interrupt Enabled Processor Offload

The 4541 performs serial communications independent of the microprocessor. To-
gether with an IRQ functionality, this allows software to continue on other tasks while
serial peripheral communications occurs, requiring only to be briefly interrupted when
the next event on the serial peripheral bus occurs.

Processor Speed Independence

A major advantage of the 4541, is that it also handles all timing requirements of
communications on this bus, allowing the bus to be driven by a processor that can run
at different speeds, without having to modify the the bus controller software.

Co-Existence through Open-Collector Logic

Because the 4541 uses open-collector logic, it can be used in parallel with existing
software-based implementations of the bus protocol, ensuring compatibility with ex-
isting software. It is installed in this configuration in the MEGA65, allowing the legacy
software-based serial peripheral communications software that controls the serial pe-
ripheral bus to continue to be used unmodified.

THEORY OF OPERATION
The 4541 presents a quite simple interface: You issue commands, wait for a response,
and retrieve any data that the command retrieved. Some commands also require a
data byte, which is provided by a dedicated register. There is also a device info regis-
ter, that lets you see what the 4541 believes about the current status of the most re-

145

cently requested device, including whether it is present, and whether it supports either
or both of the JiffyDOS™ or Commodore™ 128 extensions to the standard protocol.

So, for example, to release the Attention line, you can simply write the appropriate
command byte value (65 = $41) to the command register at $D698, and then check
for the completion status in the status register at $D697, as shown in the following
example written in BASIC65:

10 POKE $D698 , $41

20 IF (PEEK ($ D 6 9 7) AND $20) = $00 GOTO 20

30 P R I N T " DONE "

The 4541 implements a set of commands that map very closely to the KERNAL calls
that are used to control the IEC bus on the C64 and related computers. In most cases,
there is a single corresponding command for the 4541, although in a few cases, you
may need to issue two commands, as summarised in the following table:

KERNAL Call Meaning and Equivalent 4541 Command(s)

$FF93 LSTNSA Send LISTEN secondary address.

4541 Equivalent: Data = Binary OR of $60 and the
desired secondary address. Command $30. Then
Command $41 to release the Attention line.

$FF96 TALKSA Sent TALK secondary address.

4541 Equivalent: Data = Binary OR of $60 and the
desired secondary address. Command $30. Then
Command $41 to release the Attention line.

$FFA5 IECIN Receive a byte from the serial peripheral bus.

4541 Equivalent : Command $32. Received byte is
available in the data register on completion.

$FFA8 IECOUT Send a byte to the serial peripheral bus.

4541 Equivalent : Data = the byte to send.
Command $31 (or $30 if the byte is to be sent under
Attention).

$FFA8 UNTALK Send UNTALK command to serial peripheral bus.

4541 Equivalent : Data = $5F. Command $30.

$FFAB UNLISTN Send UNLISTEN command to serial peripheral bus.

4541 Equivalent : Data = $3F. Command $30.

$FFB1 LISTEN Send LISTEN command to the serial peripheral bus.

146

KERNAL Call Meaning and Equivalent 4541 Command(s)

4541 Equivalent : Data = $20 plus the device
number. Command $30.

$FFB4 TALK Send TALK command to the serial peripheral bus.

4541 Equivalent : Data = $40 plus the device
number. Command $30.

$FFB7 READST Read the status of the serial peripheral bus.

4541 Equivalent : Read the status bits from $D698.
For convenience, the upper bits of this status byte
have the same layout as used in the KERNAL.

The 4541 is very obedient: If you ask it to do something new, it will start doing that
immediately, even if it was in the middle of doing something else – even if it was half-
way through sending a byte of data to the serial peripheral bus!

You should therefore always wait until the IRQREADY bit in $D697 is set before issuing
each command, or reading the status bits, to make sure that the controller has finished
whatever it was last asked to do.

EXAMPLES
Reading the DOS channel status

The following BASIC65 program can be used to talk to a device connected to the
serial peripheral bus. Note that because it uses the 4541, and not the C65/MEGA65
CBDOS, it ignores the presence of the internal 3.5” disk drive, because that drive is
not connected to the serial peripheral bus.

147

10 REM A B O R T ANY E X I S T I N G 4541 C O M M A N D IN P R O G R E S S

20 POKE $D698 , $00

30 REM R E S E T THE S E R I A L P E R I P H E R A L BUS BY P U L L I N G

40 REM THE R E S E T PIN LOW FOR 1 S E C O N D

50 POKE $D698 , $72 : S L E E P 1 : POKE $D698 , $52

60 REM GIVE C O N N E C T E D D E V I C E S TIME TO GET R E A D Y A F T E R R E S E T

70 S L E E P 2: REM THE 1541 T A K E S Q U I T E A W H I L E TO R E S E T !

80 REM S E L E C T THE D E V I C E N U M B E R TO TALK TO

90 D = 8

100 P R I N T " D E V I C E "; D ; " TALK "

110 POKE $D699 , $40 + D : POKE $D698 , $30 : G O S U B 1000

120 P R I N T " S E C O N D A R Y A D D R E S S 15"

130 POKE $D699 , $6F : POKE $D698 , $30 : G O S U B 1000

140 P R I N T " TURN A R O U N D TO L I S T E N "

150 POKE $D698 , $35 : G O S U B 1000

160 P R I N T " READ DOS S T A T U S "

170 POKE $D698 , $32 : G O S U B 1000

180 P R I N T CHR$ (PEEK ($ D 6 9 9));

190 CC = CC + 1 : IF CC < 200 GOTO 180

999 END

1000 REM WAIT FOR 4541 TO F I N I S H C O M M A N D

1010 S = PEEK ($ D 6 9 7) : IF (S AND 32) = 32 GOTO 1020

1020 GOTO 1000

1030 IF S AND 128 THEN P R I N T " D E V I C E NOT P R E S E N T " : END

1040 R E T U R N

If you have a 1581 with a JiffyDOS™ ROM connected, this program will display some-
thing like the following when run:

R E A D Y .

RUN

D E V I C E 8 TALK

S E C O N D A R Y A D D R E S S 15

TURN A R O U N D TO L I S T E N

READ DOS S T A T U S

73 ,(C) 1989 J I F F Y D O S 6.0 1581 ,00 ,00

00 , OK ,00 ,00

00 , OK ,00 ,00

00 , OK ,00 ,00

...

00 , OK ,0

R E A D Y .

148

COMMAND REFERENCE
The following table lists the set of command codes suppoprted by the 4541.

Command Byte Action

Abort Running Commands

$00 Abort any executing command.

$01 Reset controller state: Release ATN, CLK, DATA, SRQ
and enable default protocol selection.

Bit-Bashing Commands

$41 Release Attention (ATN) line to 5V.

$61 Pull Attention (ATN) line to 0V.

$43 Release clock (CLK) line to 5V.

$63 Pull clock (CLK) line to 0V.

$44 Release data (DATA) line to 5V.

$64 Pull data (DATA) line to 0V.

$53 Release fast serial clock (SRQ) line to 5V.

$73 Pull fast serial clock (SRQ) line to 0V.

$52 Pull reset (RESET) line to 0V.

$72 Release reset (RESET) line to 5V.

Protocol Variant Control Commands

$4A Enable solicitation of JiffyDOS™ extension to the
serial protocol.

$6A Disable solicitation of JiffyDOS™ extension to the
serial protocol.

$46 Enable solicitation of Commodore™ 1571/1581
fast serial extension to the serial protocol.

$66 Disable solicitation of Commodore™ 1571/1581
fast serial extension to the serial protocol.

Serial Bus Protocol Commands

$30 Send byte in $D699 under attention. Attention line is
held at 0V at the end of the transaction.

149

Command Byte Action

$31 Send bye in $D699 without attention. The attention
line is released, if it was previously asserted.

$32
Receive a byte from the peripheral serial bus. There
must be a previously activated talker. The received
byte is stored in $D699.

$33 RESERVED

$34 Send a byte and indicate EOI. Attention is released
prior to transmission, if was asserted.

$35 Turn around from talker to listener.

Protocol Timing Commands

$80 Reset protocol timing to defaults.

$81 Set TR delay (1 – 255 microseconds). Old value can
be read from $D699.

$82 Set TTK delay (1 – 255 microseconds). Old value can
be read from $D699.

$83 Set TDC timeout (1 – 255 milliseconds). Old value
can be read from $D699.

$84 Set TBB delay (1 – 255 microseconds). Old value can
be read from $D699.

$85 Set THA delay (1 – 255 microseconds). Old value can
be read from $D699.

$86 Set TST delay (1 – 255 microseconds). Old value can
be read from $D699.

$87 Set TVT delay (1 – 255 microseconds). Old value can
be read from $D699.

$88 Set TAL delay (1 – 255 microseconds). Old value can
be read from $D699.

$89 Set TAC delay (1 – 255 microseconds). Old value can
be read from $D699.

$8A Set TAT delay (1 – 255 milliseconds). Old value can
be read from $D699.

150

Command Byte Action

$8B

Set TH delay (1 – 255 milliseconds). Old value can
be read from $D699. This value currently has no
effect, as the 4541 allows truly infinite data-hold off
by a listener, except for bytes sent under attention,
where THA is used instead.

$8C Set TNE delay (1 – 255 microseconds). Old value can
be read from $D699.

$8D Set TF delay (4 – 1020 microseconds). Old value can
be read from $D699, scaled by 4.

$8E Set TYE delay (1 – 255 microseconds). Old value can
be read from $D699.

$8F Set TEI delay (1 – 255 microseconds). Old value can
be read from $D699.

$90 Set TAR delay (1 – 255 microseconds). Old value can
be read from $D699.

$91 Set TJT delay (4 – 1020 microseconds). Old value
can be read from $D699, scaled by 4.

$92 Set TJ0 delay (1 – 255 microseconds). Old value can
be read from $D699.

$93 Set TJ1 delay (1 – 255 microseconds). Old value can
be read from $D699.

$94 Set TJ2 delay (1 – 255 microseconds). Old value can
be read from $D699.

$95 Set TJ3 delay (1 – 255 microseconds). Old value can
be read from $D699.

$96 Set TJ4 delay (1 – 255 microseconds). Old value can
be read from $D699.

$97 Set TJ5 delay (1 – 255 microseconds). Old value can
be read from $D699.

$98 Set TJ6 delay (1 – 255 microseconds). Old value can
be read from $D699.

$99 Set TJ7 delay (1 – 255 microseconds). Old value can
be read from $D699.

$9A Set TJ8 delay (1 – 255 microseconds). Old value can
be read from $D699.

151

Command Byte Action

$9B Set TJ9 delay (1 – 255 microseconds). Old value can
be read from $D699.

$9C Set TJ10 delay (1 – 255 microseconds). Old value
can be read from $D699.

$9D Set TJ11 delay (1 – 255 microseconds). Old value
can be read from $D699.

$9E Set TJR delay (1 – 255 microseconds). Old value can
be read from $D699.

$9F Set TFS delay (1 – 255 microseconds). Old value can
be read from $D699.

$A0 Set TFF delay (1 – 255 microseconds). Old value can
be read from $D699.

$A1 Set TPULLUP delay (1 – 255 microseconds). Old value
can be read from $D699.

$A2 Set TJD delay (4 – 1020 microseconds). Old value
can be read from $D699, scaled by 4.

$A3 Set TJ12 delay (1 – 255 microseconds). Old value
can be read from $D699.

Diagnostic Commands

$D0 Trigger optional integrated data logger, if enabled.

$D1
Begin transmitting a 1KHz pulse train on the CLK and
DATA lines. Continues until aborted by another
command.

REGISTER TABLE
The 4541 has the following registers:

HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D694 54932 DATALOG0
D695 54933 DATALOG1
D697 54935 IRQFLAG IRQRX IRQRDY IRQTO IRQEN IRQRXEN IRQRDYEN IRQTOEN
D698 54936 STNODEV STNOEOI STSRQ STVERIFY STC STD STTO STDDIR

continued …

152

…continued
HEX DEC DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
D699 54937 DATA
D69A 54938 PRESENT PROT DIATN DEVNUM

• DATA Data byte read from IEC bus

• DATALOG0 Access integrated data logger in IEC controller

• DATALOG1 Access integrated data logger in IEC controller

• DEVNUM Lower 4 bits of currently selected device number

• DIATN Device is currently held under attention

• IRQEN Enable interrupts if set

• IRQFLAG Interrupt flag. Set if any IRQ event is triggered.

• IRQRDY Set if ready to process a command

• IRQRDYEN Enable TX interrupt source if set

• IRQRX Set if a byte has been received from a listener.

• IRQRXEN Enable RX interrupt source if set

• IRQTO Set if a protocol timeout has occurred, e.g., device not found.

• IRQTOEN Enable timeout interrupt source if set

• PRESENT Device is present

• PROT Device protocol support (5=C128/C65 FAST, bit 6 = JiffyDOS(tm))

• STC State of CLK line

• STD State of DATA line

• STDDIR Data direction when timeout occurred.

• STNODEV Device not present

• STNOEOI End of Indicate (EOI/EOF)

• STSRQ State of SRQ line

• STTO Timeout occurred

• STVERIFY Verify error occurred

153

SERIAL BUS TIMING
This section describes the timing requirements primarily from the perspective of a bus
controller. If you are designing serial bus peripherals, please take care to carefully
understand how these time requirements affect peripherals: The

Send Byte Under Attention

When the controller wishes to get the attention of one or more peripherals on the bus,
it uses the attention (ATN) line to indicate this: It pulls it low to 0V, and then sends one
or more bytes that will be received by all devices on the bus.

The SRQ line is not active in this transaction.

To summarise:

1. The controller pulls the ATN to 0V and releases the CLK, DATA and SRQ lines if it
was holding any of them at 0V.

2. All peripherals on the bus as they notice the ATN line at 0V begin to indicate this
by pulling the DATA line to 0V. The controller can’t tell how many, or whether all
the devices on the bus have responded: Rather, it can only tell that at least one
device has.

3. If no device responds, DATA stays at 5V, because no one is pulling it down, and
the controller will indicate a DEVICE NOT PRESENT error.

4. While the controller is waiting for devices to respond, it also pulls the CLK line to
0V, typically a short time after pulling the ATN line to 0V.

5. After the controller has waited a while, typically 1 millisecond, it assumes that
all peripherals who are going to answer the ATN request have.

6. Next, the controller releasing the CLK line to 5V to indicate that it wants to
send a byte of data on the bus. This is the start of the transmission of a byte
under ATN. All of the previous steps have had the purpose of establishing the
ATN communications.

7. The controller now waits for all devices to indicate their readiness to receive a
byte by releasing the DATA line back to 5V. Because the bus is open-collector,
if even a single device is not ready, it will be able to keep pulling the DATA line
down to 0V, causing the controller to wait. If this takes too long, the controller
may give up and indicate a timeout condition.

8. Once the last device has indicate it is ready to receive data, the controller waits
a little longer, to make sure that all of the devices are able to do their final
preparations to receive a byte. This doesn’t take very long.

9. After that delay, the controller begins sending the 8 bits of data, beginning with
the least significant bit (LSB), that is bit 0. For each bit, it first brinks the CLK line
low to indicate that data is being loaded onto the bus, pulls the DATA line to 0V

154

if it wants to send a 0 bit, or lets it float to 5V if it wants to send a 1 bit, and
then releases the CLK line back to 5V, and holds it there for a while. The timing
of this process is critical: If the CLK is low or high for too short a period of time,
the peripherals will get confused, and possibly miss one or more bits, resulting in
general chaos on the bus.

10. After the controller has sent the last bit, it holds the CLK line low, and releases
the DATA line. It expects one or more peripherals to pull the DATA line to 0V
within a short time to acknowledge reception of the byte. If this does not occur,
the controller may report a timeout or DEVICE NOT PRESENT error.

11. At the conclusion of this, the controller is holding the CLK line at 0V, and the
peripheral(s) are holding the DATA line at 0V. This combination serves to tell
each other that the controller is not yet wanting to send the next byte, and that
the peripheral(s) are not yet ready to receive the next byte.

12. If the controller wishes to send more bytes under attention, it will repeat this
process from the step where it released the CLK line to 5V.

13. Alternatively, if it was the last byte to be sent under this attention request, the
controller waits a short time, and then releases the ATN line.

TVT

ATN

DATA

CLK

SRQ

TAT THA
TST

TALTAC TNE TR

TF

Listeners are
all ready to
receive byte

First listener
responds to
ATN request

Stop here to
send more
under ATN

Listener(s) have
accepted the
byte of data

0 1 2 3 4 5 6 7

155

Symbol Min 4541 Max Description

TAT – 1000 ∞

Device attention response timeout. A
device must respond to the ATN request
within this time. If not device responds
within this time, a DEVICE NOT
PRESENT error will result. Peripherals
should therefore conform to the 1,000
microsecond typical value.

TAC – 20 ∞? Time between pulling ATN low, before
CLK is also pulled low.

TAL – 1000 ∞?
Time between first device responds to
ATN and the controller releases CLK to
5V.

THA – 64 ms ∞

Listener hold-off. The protocol allows a
listener can hold of for any desired
period of time, or for no time at all. The
4541 does not allow this during ATN
requests.

TNE – 40 200

Non-EOI timing-channel response to
Ready For Data. If this interval is too
long, the byte will be interpreted as an
EOI byte, and the peripherals will
require an EOI response (see TEI).

TST 20* 35 ∞
Data bit setup time. Referred to as TS in
the C64 Programmer’s Reference
Guide.

TVT 20* 35 ∞
Data bit valid hold time. Referred to as
TV in the C64 Programmer’s Reference
Guide.

TF – 1000 1000 Frame handshake (acknowledge)
timeout.

TR 20 200 ∞
Time between receiving end of frame
acknowledgement and releasing the
ATN line to 5V.

All time units are in micro seconds, unless otherwise indicated.

* The Commodore™ 64 Programmer’s Reference Guide suggests that TS
and TV each have a minimum duration of 20 micro seconds. Our
investigations suggest that when communicating with a 1541, that
safe values for TST and TVT are closer to 70 micro seconds.

156

JiffyDOS™ Protocol Solicitation

If support for the JiffyDOS™ protocol extension is enabled, the 4541 will solicit this
during the transmission of TALK and LISTEN commands only. That is, when sending a
byte under attention that is in the range $20 – $5F.

The SRQ line is not active in this transaction.

To summarise:

1. The transmission of the byte occurs normally, until the TST period just before the
last bit (bit 7) of the byte.

2. Instead of waiting TST, the controller must instead wait for a much longer period,
typically 300 microseconds, so that the listener will recognise that it is being
asked if it supports the JiffyDOS™ protocol. The controller also releases the
DATA line to 5V.

3. If the listener supports the JiffyDOS™ protocol, it pulls DATA to 0V when it ob-
serves that the CLK line has been held low for the longer period.

4. After the listener has held DATA at 0V long enough for it to be sure the controller
has had the chance to notice, it releases the DATA line to 5V. The device will
now use the JiffyDOS™ for the requested TALK or LISTEN session.

5. The controller notes if the DATA line was pulled to 0V, and if so, records that the
listener has selected the JiffyDOS™ protocol, and will use this protocol for the
requested TALK or LISTEN session.

6. The controller now sends the final bit of the byte.

7. The controller ensures that the data bit value is visible on DATA before asserting
CLK, typically 1 – 4 microseconds.

8. The controller releases the CLK line to 5V to indicate to the listener that the final
data bit is ready.

9. The remainder of the byte transfers as normal.

157

TPULLUP

TVT

TVT

ATN

DATA

CLK

SRQ

TAT THA
TST

TALTAC TNE TR

TF

JD-Enabled
listener pulses
DATA low

Offer JD by
holding CLK

low longer

0 1 2 3 4 5 6 7

TJA

TJD

TIJ

Symbol Min 4541 Max Description

TJD 320 320 ∞

Time that CLK is held at 0V between
the two final bits of the byte to provide
the side-channel indication that the
controller wishes to use the JiffyDOS™
protocol extension.

TIJ 100 – 295
Time before the listener accepts and
begins to acknowledge the selection of
the JiffyDOS™ protocol extension.

TIJ 4/100* – 200

The duration that the listener holds the
DATA line low to acknowledge the
selection of the JiffyDOS™ protocol
extension.

All other timing values are identical to the sending a byte under attention case.

All time units are in micro seconds, unless otherwise indicated.

* The 4541 can detect pulse-widths as narrow as 4 microseconds.
However, software implementations of the protocol will require a larger
value. JiffyDOS™uses 100 microseconds.

158

JiffyDOS™ Send from Controller to Peripheral

Unlike the standard serial protocol, the JiffyDOS™ protocol uses different protocols for
sending and receiving. This is necessary on software imeplementations to obtain the
maximum speed, because the serial peripheral lines are mapped to different register
bits, and part of the magic of the JiffyDOS™ protocol is how it cleverly manipulates the
received bits to reconstruct the complete byte in the least possible time, and similarly
when transmitting.

The result is quite amazing: JiffyDOS™ can send a byte in approximately the same
time it takes the original protocol to send a bit!

Note that the JiffyDOS™ protocol transmits data bits with the opposite polarity to the
standard protocol, that is a 1 bit is indicated by 0V, while a 0 bit is indicated by 5V.

The SRQ line is not active in this transaction.

In summary,

1. Depending on the state of the controller when it begins transmitting, it may be
holding the CLK line at 0V. If so it releases it immediately.

2. Next, after some arbitrary time, the peripheral indicates it’s readiness to receive
a byte from the controller by releasing the DATA line to 5V.

3. The timing for the remainder of the byte transfer is now critical, because imme-
diately following releasing DATA, the peripheral will start reading the CLK and
DATA signals to transfer the byte.

4. The controller waits a few microseconds (TJ6).

5. The controller sets CLK to 0V if data bit 4 is 1, else releases it to 5V. The controller
sets DATA to 0V if data bit 5 is 1, else releases it to 5V.

6. The controller waits a few microseconds (TJ7).

7. The controller sets CLK to 0V if data bit 6 is 1, else releases it to 5V. The controller
sets DATA to 0V if data bit 7 is 1, else releases it to 5V.

8. The controller waits a few microseconds (TJ8).

9. The controller sets CLK to 0V if data bit 3 is 1, else releases it to 5V. The controller
sets DATA to 0V if data bit 1 is 1, else releases it to 5V.

10. The controller waits a few microseconds (TJ9).

11. The controller sets CLK to 0V if data bit 2 is 1, else releases it to 5V. The controller
sets DATA to 0V if data bit 0 is 1, else releases it to 5V.

12. The controller waits a few microseconds (TJ10).

13. The controller pulls the DATA line to 0V. It also releases the CLK line to 5V, unless
it wishes to indicate EOI, in which case it pulls the CLK line to 0V.

159

14. The controller waits a few microseconds, during which time the peripheral reads
the EOI value, and then pulls DATA to 0V. (TJ11).

15. The byte transfer is complete.

Note when sending the first byte under the JiffyDOS™ protocol, that the CLK signal
may be at 0V. The time between bytes (TJBB) is not required (set to zero), because the
tight receive loop on the peripheral simply indicates when it is ready to receive each
next byte, which also contributes to it’s high speed.

Note also that the timing below is based on when the signals should be set. For soft-
ware implementations, the latency of the necessary processor instructions must be
taken into account. This is not a problem with the 4541, because it has a latency of
less than 50ns.

ATN

DATA

CLK

SRQ

TH

TJ7

TJ6TJBB

TJ8

TJ9

TJ10

TJ11

TJ12

Listener is
ready to

receive byte

Talker is
ready to

send byte

0

E
O

I

1

234

5

6

7

Symbol Min 4541 Max Description

TJBB 0 0 ∞

Time between bytes. There is no
minimum time between bytes with the
JiffyDOS™ protocol, provided TJ12 is
sufficiently large, as that effectively
hides the latency of the receive routine.

TJ6 10 10 10 JiffyDOS™ transmit receiver setup time.

TJ7 13 13 13 JiffyDOS™ transmit hold time, first
di-bit.

TJ8 11 11 11 JiffyDOS™ transmit hold time, second
di-bit.

160

Symbol Min 4541 Max Description

TJ9 11 11 11 JiffyDOS™ transmit hold time, third
di-bit.

TJ10 12 12 12 JiffyDOS™ transmit hold time, fourth
di-bit.

TJ11 15 15 15

JiffyDOS™ transmit hold time, status
bits. CLK carries the EOI notification,
and DATA is set to 0V to indicate
successful transmission. The receiver
may indicate a frame error if DATA is
observed to be 5V.

TJ12 18 18 18

JiffyDOS™ post transmit recovery time.
CLK is pulled to 0V, and DATA is set to
0V to indicate successful transmission.
The receiver may indicate a frame error
if DATA is observed to be 5V.

TJR 15 15 15

All other timing values are identical to the sending a byte under attention case.

All time units are in micro seconds, unless otherwise indicated.

JiffyDOS™ Controller Receive from Peripheral

Unlike the standard serial protocol, the JiffyDOS™ protocol uses different protocols for
sending and receiving. This is necessary on software imeplementations to obtain the
maximum speed, because the serial peripheral lines are mapped to different register
bits, and part of the magic of the JiffyDOS™ protocol is how it cleverly manipulates the
received bits to reconstruct the complete byte in the least possible time, and similarly
when transmitting.

The result is quite amazing: JiffyDOS™ can send a byte in approximately the same
time it takes the original protocol to send a bit!

Unlike when transmitting via the JiffyDOS™ protocol where the data bits are inverted,
when receiving from a peripheral speaking the JiffyDOS™ protocol, the bits are rep-
resented naturally, i.e., with 1 = 5V and 0 = 0V.

The SRQ line is not active in this transaction.

To summarise:

1. The peripheral may wait an arbitrary period of time, before it has a byte to send
to the controller. When it does, it releases CLK to 5V.

161

2. When the controller notices this, it releases DATA to 5V, and begins the critical
timing section of the protocol.

3. The peripheral waits a short while. For peripherals using a software-
implementation, i.e., all Commodore™ drives, the delay is a natural consequence
of the processor instruction involved in commencing sending of the byte, similarly
for the following steps.

4. The peripheral places the first di-bit of data on the CLK and DATA lines, and waits
a short while.

5. The peripheral places the second di-bit of data on the CLK and DATA lines, and
waits a short while.

6. The peripheral places the third di-bit of data on the CLK and DATA lines, and
waits a short while.

7. The peripheral places the fourth di-bit of data on the CLK and DATA lines, and
waits a short while.

8. The peripheral places the status bits for the byte onto the CLK and DATA lines,
and waits a short while.

9. The controller pulls DATA to 0V to acknowledge receipt of the byte, and to pre-
vent the peripheral from sending another byte before it is ready.

10. The peripheral pulls the CLK line to 0V if it does not have another byte ready to
send immediately, lease it remains at 5V.

The status bits have the following interpretation:

CLK DATA Meaning

0V 0V An error occurred.

0V 5V Byte received with EOI.

5V 0V Normal byte received (no EOI).

5V 5V An error occurred.

162

ATN

DATA

CLK

SRQ

TJ0

TJ2

TJ1TH

TJ3

TJ4

TJ5

TJH

Controller is
ready to

receive byte

7

S
B
0

S
B
15

640

1

2

3

Symbol Min 4541 Max Description

TJH 10 – ∞ Peripheral hold-off until it has data to
send.

TJ0 0 – ∞ Controller hold-off until ready to
receive a byte.

TJ1 37 37 ∞
The time is used by software
implementations to prepare the byte
for immediate transmission.

TJ2 14 14 14 Send first di-bit of data

TJ3 10 10 10 Send first di-bit of data

TJ4 11 11 11 Send first di-bit of data

TJ5 11 11 11 Send first di-bit of data

TJH 13 13 13 Send status bits

All other timing values are identical to the sending a byte under attention case.

All time units are in micro seconds, unless otherwise indicated.

163

Talker to Listener Turn-Around

When the bus controller is commanding a device to talk, it finished the transmission
with ATN asserted to 0V. The controller is holding the CLK line at 0V, and the device
it was talking to is holding the DATA line. This situation needs to be reversed: The
controller needs to give up control of the bus, and hand it over to the device.

The SRQ line is not active in this transaction.

To summarise:

1. The controller waits long enough before releasing the ATN line, to make sure
that the peripheral(s) has finished acknowledging the byte that was just sent to
it under attention. This is the TR delay.

2. The controller releases the ATN line to 5V.

3. The controller waits a while. This is the TTK delay.

4. The controller releases the CLK line to 5V, and pulls the DATA line to 0V. From this
point forward, the controller has relinquished control of the bus, and becomes a
listener.

5. After some period of time, the peripheral that has been commanded to talk
asserts the CLK line to 0V, and releases the DATA line, which remains at 0V,
because the the controller is still pulling it down to 0V in preparation to be the
listener. From this point in time, the peripheral has become the sole talker on the
bus. The delay before the CLK line is pulled to 0V by the peripheral is the TDC
timeout.

6. The peripheral waits a while, before it is allowed to begin talking. This is the TDA
delay.

Once this process is complete, the roles of the controller and peripheral have reversed,
with the peripheral now having the role of talker, and the controller (and possibly other
devices on the bus) of listener.

164

ATN

DATA

CLK

SRQ

TR

TTK

TDC

TDA

TH

Controller
becomes
listener

Peripheral
acknowledged
byte under ATN

Peripheral
becomes

talker

Peripheral
requests to

1st send byte

Peripheral
begins
sending

Symbol Min 4541 Max Description

TDA 4/80* – ∞ Talk-Attention acknowledge hold
duration. Controller holds CLK

TDC 0 64 ms ∞

Talk-Attention acknowledge duration,
i.e., the time a peripheral is permitted
to take before becoming talker. Can
commence immediately when CLK is
observed at 5V.

TH – N/A ∞
Listener hold-off. Listener can hold of
for any desired period of time, or for no
time at all.

TR 0/20^ 200 – Frame to release of ATN.

TTK 20 40 100 Talk Attention Release.

All time units are in micro seconds, unless otherwise indicated.

* TDA is provided by the peripheral, not the controller. The 4541 is able to
respond much faster than a C64 to serial bus events, and thus requires
only 4 microsecond to ensure the CLK line has time to rise to 5V. For
controllers using software implementations of the protocol, such as the
C64, the minimum is 80 microsecond. Therefore peripherals should
always use a value of at least 80 microsecond for TDA.

^ The Commodore™ 64 Programmer’s Reference Guide lists TR as having
a minimum duration of 20 microsecond. We see no evidence that
would suggest that any implementation requires a delay before the ATN
line can be released following the transfer of a byte.

165

Send Byte With End-or-Indicate (EOI)

After sending a stream of data, a device will often wish to indicate to the listener that
it has reached the end of the data, for example, so that it can begin processing it. This
is accomplished by specially marking the byte with the End-or-Indicate (EOI) attribute.

This is implemented using a timing side-channel, so that it does not require a whole
dedicated wire. When the talker has floated CLK to 5V to indicate it wishes to send
a byte, and when the listener has floated DATA to 5V to indicate that it is ready to
receive, the talker can wait at least 200 microseconds, to indicate to the listener that
the byte should be received with EOI status. The listener signals this to the talker by
pulling the DATA line to 0V for a while, after which the transmission occurs much the
same as normal.

The SRQ line is not active in this transaction.

To summarise:

1. The talker releases CLK to 5V to indicate that it wishes to send a byte.

2. After an arbitrary period of time, the listener releases the DATA line to 5V to
indicate its readiness to receive a byte.

3. Normally at this point, the talker would begin sending the bits after a short period
of time. However, to indicate EOI, it instead waits silently, until the listener gets
the idea that this byte is different, resulting in the listener pulling the DATA line
back down to 0V.

4. The listener holds the DATA line at 0V for just long enough for it to be sure that
the talker has noticed, and then releases it again.

5. As soon as the talker has seen the listener pull the DATA line to 0V and release
it again, it begins sending the byte normally after a short delay.

6. If it waits too long, the listener will assume that the talker wanted to indicate
EOI without actually sending a byte.

7. The transmission of the byte completes in an identical manner to the non-EOI
case.

166

ATN

DATA

CLK

SRQ

TH TEI

TYETBB TRY

TFR

TF

Listener
assumes EOI,
and ACKs it

Listener is
ready to

receive byte

0 1 2 3 4 5 6 7

TST

TVT

Symbol Min 4541 Max Description

TBB 100 100 ∞

Time between bytes. Talkers must wait
long enough to allow the listener to
register the end of the transmission of
the previous byte, before the next byte
can be sent.

TH – N/A ∞
Listener hold-off. Listener can hold of
for any desired period of time, or for no
time at all.

TYE 200 250 ∞

EOI indication delay. The sender must
wait at least 200 microseconds for the
receiver to recognise that a byte is
being sent with EOI. If the delay is less
than this, the receiver will not
acknowledge the EOI.

TEI 60 80 ∞

EOI acknowledge hold time. The
receiver must pull the DATA line to 0V
again for at least 60 microseconds, to
allow the sender to detect this EOI
acknowledgement pulse.

167

Symbol Min 4541 Max Description

TRY 60 80 100

The talker response limit is a relatively
narrow time window during which the
talker must commence transmission of
the byte. If it is too early, the listener
may become desynchronised, because
it has not hat time to prepare for
reception after sending the EOI
acknowledgement. If it is too long, the
receiver may conclude the talker has
stopped talking.

TST 20* 35 ∞
Data bit setup time. Referred to as TS in
the C64 Programmer’s Reference
Guide.

TVT 20* 35 ∞
Data bit valid hold time. Referred to as
TV in the C64 Programmer’s Reference
Guide.

TF – 1000 1000 Frame handshake (acknowledge)
timeout.

TFR 0/60� 0 ∞
EOI Frame acknowledge. The listener
pulls DATA to 0V after a short period of
time to acknowledge the byte sent with
EOI.

All time units are in micro seconds, unless otherwise indicated.

* TST is provided by the peripheral, not the controller. The 4541 is able to
respond much faster than a C64 to serial bus events, and thus requires
only 4 microsecond to ensure the CLK line has time to rise to 5V. For
controllers using software implementations of the protocol, such as the
C64, the minimum is 80 microsecond. Therefore peripherals should
always use a value of at least 80 microsecond for TDA.

^ The Commodore™ 64 Programmer’s Reference Guide lists TFR as having
a minimum duration of 60 microsecond. We see no evidence that would
suggest that any implementation requires a delay before the DATA line
can be pulled low by the listener to acknowledge receipt of a byte.

Receive Byte

Receiving bytes on the IEC bus occurs identically to the sending case. The key differ-
ence is that the 4541 is tolerant of a much wider range of timing parameters than
software implementations of the bus protocol. The 4541 requires not more than 4

168

microseconds for any given bus state, which is the time required for the pull-up resis-
tors on the bus to allow lines to float back to 5V. Internally, the 4541 is capable of
detecting bit times shorter than 1 microsecond.

OPTIONAL INTEGRATED DATA-LOGGER
The 4541 is available in a variant that contains an embedded serial peripheral bus
data-logger. This is designed to aid with debugging protocol errors on this bus. It
commences capturing data whenever command $D0 is issued to the 4541, and will
capture data for approximately 4 milliseconds.

• DATALOG0 The low-byte of the optional integrated serial peripheral bus data
logger. Writing $00 to this register causes the read pointer to the data log to
be reset to the beginning of the capture. Writing $01 to this register, causes the
read point of the data logger to be advanced by one time step. The time steps
are approximately 1 microsecond, with additional time steps added whenever
one of the signals on the serial peripheral bus changes state.

• DATALOG1 The high-byte of the optional integrated serial peripheral bus data
logger. Different fields can be read at this address by writing the following
values to the DATALOG0 register:

– $02 - Read low byte of IEC controller state machine state number.

– $03 - Read high byte of IEC controller state machine state number.

– $04 - Read low byte of number of cycles the previous bus state was held
for.

– $05 - Read high byte of number of cycles the previous bus state was held
for.

Each time-step records 16 bits of information about the serial peripheral bus:

• DATALOG0 Bit 0 DATA line input value

• DATALOG0 Bit 1 CLK line input value

• DATALOG0 Bit 2 SRQ line input value

• DATALOG0 Bit 3 DATA line output state

• DATALOG0 Bit 4 CLK line output state

• DATALOG0 Bit 5 SRQ line output state

• DATALOG0 Bit 6 ATN line output state

• DATALOG0 Bit 7 RESET line output state

• DATALOG1 Access to the additional data logger fields.

169

The input values are the voltages that the 4541 reads on the respective pins. Sepa-
rately, the data-logger records whether the 4541 is pulling each of those lines low.
This allows determination as to whether a connected peripheral or the 4541 is pulling
a given signal low. This provides much more information than simply probing the lines
of the serial peripheral bus, where you cannot readily determine who has pulled a
given line low.

The following truth table explains how to interpret these signals:

Input Value Output Value Meaning

1 1 Signal is floating at 5V. No device is pulling it low.

0 1 Signal is at 0V. The 4541 is not pulling it low, either
a connected peripheral or the CIA is pulling it low.

0 0

Signal is 0V. The 4541 is pulling it low. Other
devices might also be pulling it low, but it’s not
possible to discriminate between these two
situations. low.

1 0

Signal is floating at 5V, but the 4541 is pulling it to
0V. Your computer is probably broken, or someone
has connected 5V to the signal without a
current-limiting resistor in between, in which case,
your computer is about to be broken.

Extracting Data from the Data Logger

The following program extracts and displays the contents of the Data Logger as a
PETSCII waveform, like the one shown here:

170

10 WK=$50000

20 NL=PEEK($ED)

30 FETCH 3, 4096*2, 0, WK

40 PRINT"ƳDUMPING..."

50 POKE$D694,0

60 FORI=0 TO 4095*2 STEP 2

70 POKEWK+I,PEEK($D694):POKE WK+1+I,PEEK($D695)

80 POKE$D694,1

90 NEXT I

100 PRINT"ƳPROCESSING..."

110 PRINT"ƳŲDűűƽCűűƽSűűƽAűűƽSűƽSűƽSűűƽTűƽIűƽMűƽEƱƱƱƱƱƱƱƱƱƱƱƱƱƱƱƱƲ";

120 PV%=0:PS%=0:C%=0:DV=1:CV=1:SV=1:AV=1

130 FORD=0 TO 4095*2 STEP 2

140 V%=PEEK(WK+D):S%=PEEK(WK+D+1)

150 IF V%=PV% AND S%=PS% THEN GOTO 460

160 C%=C%+1

170 DD=C%>1 AND DV<>(V%AND$01) : DV=(V% AND $01)

180 CD=C%>1 AND CV<>(V%AND$02) : CV=(V% AND $02)

190 SD=C%>1 AND SV<>(V%AND$04) : SV=(V% AND $04)

200 AD=C%>1 AND AV<>(V%AND$40) : AV=(V% AND $40)

210 IFDV=0THEN BEGIN:IFDD=0 THEN D$="ķ":ELSE D$="ď":BEND

220 IFDV>0THEN BEGIN:IFDD=0 THEN D$="į":ELSE D$="Č":BEND

230 IFCV=0THEN BEGIN:IFCD=0 THEN C$="ķ":ELSE C$="ď":BEND

240 IFCV>0THEN BEGIN:IFCD=0 THEN C$="į":ELSE C$="Č":BEND

250 IFSV=0THEN BEGIN:IFSD=0 THEN S$="ķ":ELSE S$="ď":BEND

260 IFSV>0THEN BEGIN:IFSD=0 THEN S$="į":ELSE S$="Č":BEND

270 IFAV=0THEN BEGIN:IFAD=0 THEN A$="ķ":ELSE A$="ď":BEND

280 IFAV>0THEN BEGIN:IFAD=0 THEN A$="į":ELSE A$="Č":BEND

290 PRINTCHR$(27);"K";

300 IF(V% AND $08)=0 THEN PRINT"ż"; :ELSE PRINT"ť";

310 PRINT D$

320 PRINT"":PRINTCHR$(27);"K";

330 IF(V% AND $10)=0 THEN PRINT"ż"; :ELSE PRINT"ť";

340 PRINT C$

350 PRINT"":PRINTCHR$(27);"K";

360 IF(V% AND $20)=0 THEN PRINT"ż"; :ELSE PRINT"ť";

370 PRINT S$

380 PRINT"":PRINTCHR$(27);"K";

390 PRINT"ż";

171

400 PRINT A$;"űű";

410 GOSUB 550:GOSUB 490

420 PRINT"ƱƱƱƱƱƱƱƱƱƱƱƱƱƱƱƱƱ";

430 PS%=S%

440 PV%=V%

450 IF C%=77 THEN 0,18:C%=0

460 NEXT D

470 PRINT"ų";:FORL=0TONL-3:PRINT"ű";:NEXTL

480 END

490 N$=LEFT$(STR$(D/2)+".........",6)

500 PRINT"ť";

510 FORI=1TO6

520 PRINTCHR$(27);"K";MID$(N$,I,1)

530 NEXT I

540 RETURN

550 S$=MID$(STR$(S%),2,LEN(STR$(S%))):N$=RIGHT$("000"+S$,3)

560 PRINT"ť";

570 FORI=1TO3

580 PRINTCHR$(27);"K";MID$(N$,I,1)

590 NEXT I

600 RETURN

172

CHAPTER 10
Reference Tables

• Units of Storage

• Base Conversion

174

UNITS OF STORAGE
Unit Equals Abbreviation
1 Bit

1 Nibble 4 Bits
1 Byte 8 bits B

1 Kilobyte 1024 B KB
1 Megabyte1024KB or 1,048,576 B MB

175

BASE CONVERSION
DecimalBinaryHexadecimal

0 %0 $0
1 %1 $1
2 %10 $2
3 %11 $3
4 %100 $4
5 %101 $5
6 %110 $6
7 %111 $7
8 %1000 $8
9 %1001 $9
10 %1010 $A
11 %1011 $B
12 %1100 $C
13 %1101 $D
14 %1110 $E
15 %1111 $F
16 %10000 $10
17 %10001 $11
18 %10010 $12
19 %10011 $13
20 %10100 $14
21 %10101 $15
22 %10110 $16
23 %10111 $17
24 %11000 $18
25 %11001 $19
26 %11010 $1A
27 %11011 $1B
28 %11100 $1C
29 %11101 $1D
30 %11110 $1E
31 %11111 $1F

Decimal Binary Hexadecimal
32 %100000 $20
33 %100001 $21
34 %100010 $22
35 %100011 $23
36 %100100 $24
37 %100101 $25
38 %100110 $26
39 %100111 $27
40 %101000 $28
41 %101001 $29
42 %101010 $2A
43 %101011 $2B
44 %101100 $2C
45 %101101 $2D
46 %101110 $2E
47 %101111 $2F
48 %110000 $30
49 %110001 $31
50 %110010 $32
51 %110011 $33
52 %110100 $34
53 %110101 $35
54 %110110 $36
55 %110111 $37
56 %111000 $38
57 %111001 $39
58 %111010 $3A
59 %111011 $3B
60 %111100 $3C
61 %111101 $3D
62 %111110 $3E
63 %111111 $3F

176

Decimal Binary Hexadecimal
64 %1000000 $40
65 %1000001 $41
66 %1000010 $42
67 %1000011 $43
68 %1000100 $44
69 %1000101 $45
70 %1000110 $46
71 %1000111 $47
72 %1001000 $48
73 %1001001 $49
74 %1001010 $4A
75 %1001011 $4B
76 %1001100 $4C
77 %1001101 $4D
78 %1001110 $4E
79 %1001111 $4F
80 %1010000 $50
81 %1010001 $51
82 %1010010 $52
83 %1010011 $53
84 %1010100 $54
85 %1010101 $55
86 %1010110 $56
87 %1010111 $57
88 %1011000 $58
89 %1011001 $59
90 %1011010 $5A
91 %1011011 $5B
92 %1011100 $5C
93 %1011101 $5D
94 %1011110 $5E
95 %1011111 $5F

Decimal Binary Hexadecimal
96 %1100000 $60
97 %1100001 $61
98 %1100010 $62
99 %1100011 $63
100 %1100100 $64
101 %1100101 $65
102 %1100110 $66
103 %1100111 $67
104 %1101000 $68
105 %1101001 $69
106 %1101010 $6A
107 %1101011 $6B
108 %1101100 $6C
109 %1101101 $6D
110 %1101110 $6E
111 %1101111 $6F
112 %1110000 $70
113 %1110001 $71
114 %1110010 $72
115 %1110011 $73
116 %1110100 $74
117 %1110101 $75
118 %1110110 $76
119 %1110111 $77
120 %1111000 $78
121 %1111001 $79
122 %1111010 $7A
123 %1111011 $7B
124 %1111100 $7C
125 %1111101 $7D
126 %1111110 $7E
127 %1111111 $7F

177

Decimal Binary Hexadecimal
128 %10000000 $80
129 %10000001 $81
130 %10000010 $82
131 %10000011 $83
132 %10000100 $84
133 %10000101 $85
134 %10000110 $86
135 %10000111 $87
136 %10001000 $88
137 %10001001 $89
138 %10001010 $8A
139 %10001011 $8B
140 %10001100 $8C
141 %10001101 $8D
142 %10001110 $8E
143 %10001111 $8F
144 %10010000 $90
145 %10010001 $91
146 %10010010 $92
147 %10010011 $93
148 %10010100 $94
149 %10010101 $95
150 %10010110 $96
151 %10010111 $97
152 %10011000 $98
153 %10011001 $99
154 %10011010 $9A
155 %10011011 $9B
156 %10011100 $9C
157 %10011101 $9D
158 %10011110 $9E
159 %10011111 $9F

Decimal Binary Hexadecimal
160 %10100000 $A0
161 %10100001 $A1
162 %10100010 $A2
163 %10100011 $A3
164 %10100100 $A4
165 %10100101 $A5
166 %10100110 $A6
167 %10100111 $A7
168 %10101000 $A8
169 %10101001 $A9
170 %10101010 $AA
171 %10101011 $AB
172 %10101100 $AC
173 %10101101 $AD
174 %10101110 $AE
175 %10101111 $AF
176 %10110000 $B0
177 %10110001 $B1
178 %10110010 $B2
179 %10110011 $B3
180 %10110100 $B4
181 %10110101 $B5
182 %10110110 $B6
183 %10110111 $B7
184 %10111000 $B8
185 %10111001 $B9
186 %10111010 $BA
187 %10111011 $BB
188 %10111100 $BC
189 %10111101 $BD
190 %10111110 $BE
191 %10111111 $BF

178

Decimal Binary Hexadecimal
192 %11000000 $C0
193 %11000001 $C1
194 %11000010 $C2
195 %11000011 $C3
196 %11000100 $C4
197 %11000101 $C5
198 %11000110 $C6
199 %11000111 $C7
200 %11001000 $C8
201 %11001001 $C9
202 %11001010 $CA
203 %11001011 $CB
204 %11001100 $CC
205 %11001101 $CD
206 %11001110 $CE
207 %11001111 $CF
208 %11010000 $D0
209 %11010001 $D1
210 %11010010 $D2
211 %11010011 $D3
212 %11010100 $D4
213 %11010101 $D5
214 %11010110 $D6
215 %11010111 $D7
216 %11011000 $D8
217 %11011001 $D9
218 %11011010 $DA
219 %11011011 $DB
220 %11011100 $DC
221 %11011101 $DD
222 %11011110 $DE
223 %11011111 $DF

Decimal Binary Hexadecimal
224 %11100000 $E0
225 %11100001 $E1
226 %11100010 $E2
227 %11100011 $E3
228 %11100100 $E4
229 %11100101 $E5
230 %11100110 $E6
231 %11100111 $E7
232 %11101000 $E8
233 %11101001 $E9
234 %11101010 $EA
235 %11101011 $EB
236 %11101100 $EC
237 %11101101 $ED
238 %11101110 $EE
239 %11101111 $EF
240 %11110000 $F0
241 %11110001 $F1
242 %11110010 $F2
243 %11110011 $F3
244 %11110100 $F4
245 %11110101 $F5
246 %11110110 $F6
247 %11110111 $F7
248 %11111000 $F8
249 %11111001 $F9
250 %11111010 $FA
251 %11111011 $FB
252 %11111100 $FC
253 %11111101 $FD
254 %11111110 $FE
255 %11111111 $FF

179

180

CHAPTER 11
Supporters & Donors

• Organisations

• Contributors

• Supporters

182

The MEGA65 would not have been possible to create without the generous support
of many organisations and individuals.

We are still compiling these lists, so apologies if we haven’t included you yet. If you
know anyone we have left out, please let us know, so that we can recognise the con-
tribution of everyone who has made the MEGA65 possible, and into the great retro-
computing project that it has become.

ORGANISATIONS
The MEGA Museum of Electronic Games & Art e.V. Germany
EVERYTHING

Trenz Electronic, Germany
MOTHERBOARD MANUFACTURING SALES

Hintsteiner, Austria
CASE

GMK, Germany
KEYBOARD

KEVAG Telekom, Germany
WEB HOSTING

183

CONTRIBUTORS
Andreas Liebeskind
(libi in paradize)
CFO MEGA eV

Thomas Hertzler
(grumpyninja)
USA spokesman

Russell Peake
(rdpeake)
Bug herding

Alexander Nik Petra
(n0d)
Early case design

Ralph Egas
(0-limits)
Business advisor

Lucas Moss
MEGAphone PCB design

Daren Klamer
(Impakt)
Manual proof-reading

Daniël Mantione
(dmantione)
C64 hardware guru

Dr. Canan Hastik
(indica)
Chairwoman MEGA eV

Simon Jameson
(Shallan)
Platform enhancements

Stephan Kleinert
(ubik)
Destroyer of BASIC 10

Wayne Johnson
(sausage)
Manual additions

L. Kleiss
(LAK132)
MegaWAT presentation software

Maurice van Gils
(Maurice)
BASIC 65 example programs

Andrew Owen
(Cheveron)
Keyboard, Sinclair support

Adam Barnes
(amb5l)
HDMI expert and board revision

Wayne Rittimann, Jr.
(johnwayner)
Bug squashing on all levels

184

SUPPORTERS
3c74ce64 Arne Neumann Christian Gräfe
8-Bit Classics Arne Richard Tyarks Christian Heffner
@11110110100 Axel Klahr Christian Kersting
Aaron Smith Balaz Ondrej Christian Schiller
Achim Mrotzek Barry Thompson Christian Streck
Adolf Nefischer Bartol Filipovic Christian Weyer
Adrian Esdaile Benjamin Maas Christian Wyk
Adrien Guichard Bernard Alaiz Christoph Haug
Ahmed Kablaoui Bernhard Zorn Christoph Huck
Alan Bastian Witkowski Bieno Marti-Braitmaier Christoph Pross
Alan Field Bigby Christopher Christopher
Alastair Paulin-Campbell Bill LaGrue Christopher Kalk
Alberto Mercuri Bjoerg Stojalowski Christopher Kohlert
Alexander Haering Björn Johannesson Christopher Nelson
Alexander Kaufmann Bjørn Melbøe Christopher Taylor
Alexander Niedermeier Bo Goeran Kvamme Christopher Whillock
Alexander Soppart Boerge Noest Claudio Piccinini
Alfonso Ardire Bolko Beutner Claus Skrepek
Amiga On The Lake Brett Hallen Collen Blijenberg
André Kudra Brian Gajewski Constantine Lignos
André Simeit Brian Green Crnjaninja
André Wösten Brian Juul Nielsen Daniel Auger
Andrea Farolfi Brian Reiter Daniel Julien
Andrea Minutello Bryan Pope Daniel Lobitz
Andreas Behr Burkhard Franke Daniel O’Connor
Andreas Freier Byron Goodman Daniel Teicher
Andreas Grabski Cameron Roberton (KONG) Daniel Tootill
Andreas Millinger Carl Angervall Daniel Wedin
Andreas Nopper Carl Danowski Daniele Benetti
Andreas Ochs Carl Stock Daniele Gaetano Capursi
Andreas Wendel Manufaktur Carl Wall Dariusz Szczesniak
Andreas Zschunke Carlo Pastore Darrell Westbury
Andrew Bingham Carlos Silva David Asenjo Raposo
Andrew Dixon Carsten Sørensen David Dillard
Andrew Mondt Cenk Miroglu Miroglu David Gorgon
Andrzej Hłuchyj Chang sik Park David Norwood
Andrzej Sawiniec Charles A. Hutchins Jr. David Raulo
Andrzej Śliwa Chris Guthrey David Ross
Anthony W. Leal Chris Hooper de voughn accooe
Arkadiusz Bronowicki Chris Stringer Dean Scully
Arkadiusz Kwasny Christian Boettcher Dennis Jeschke
Arnaud Léandre Christian Eick Dennis Schaffers
Arne Drews Christian Gleinser Dennis Schierholz

185

Dennis Schneck Frank Haaland Helge Förster
denti Frank Hempel Hendrik Fensch
Dick van Ginkel Frank Koschel Henning Harperath
Diego Barzon Frank Linhares Henri Parfait
Dierk Schneider Frank Sleeuwaert Henrik Kühn
Dietmar Krueger Frank Wolf Holger Burmester
Dietmar Schinnerl FranticFreddie Holger Sturk
Dirk Becker Fredrik Ramsberg Howard Knibbs
Dirk Wouters Fridun Nazaradeh Hubert de Hollain
Domingo Fivoli Friedel Kropp Huberto Kusters
DonChaos Garrick West Hugo Maria Gerardus v.d. Aa
Donn Lasher Gary Lake-Schaal Humberto Castaneda
Douglas Johnson Gary Pearson Ian Cross
Dr. Leopold Winter Gavin Jones IDE64 Staff
Dusan Sobotka Geir Sigmund Straume Igor Ianov
Earl Woodman Gerd Mitlaender Igor Kurtes
Ed Reilly Giampietro Albiero Immo Beutler
Edoardo Auteri Giancarlo Valente Ingo Katte
Eduardo Gallardo Gianluca Girelli Ingo Keck
Eduardo Luis Arana Giovanni Medina Insanely Interested Publishing
Eirik Juliussen Olsen Glen Fraser IT-Dienstleistungen Obsieger
Emilio Monelli Glen R Perye III Ivan Elwood
EP Technical Services Glenn Main Jaap HUIJSMAN
Epic Sound Gordon Rimac Jace Courville
Erasmus Kuhlmann GRANT BYERS Jack Wattenhofer
ergoGnomik Grant Louth Jakob Schönpflug
Eric Hilaire Gregor Bubek Jakub Tyszko
Eric Hildebrandt Gregor Gramlich James Hart
Eric Hill Guido Ling James Marshburn
Eric Jutrzenka Guido von Gösseln James McClanahan
Erwin Reichel Guillaume Serge James Sutcliffe
Espen Skog Gunnar Hemmerling Jan Bitruff
Evangelos Mpouras Günter Hummel Jan Hildebrandt
Ewan Curtis Guy Simmons Jan Iemhoff
Fabio Zanicotti Guybrush Threepwood Jan Kösters
Fabrizio Di Dio Hakan Blomqvist Jan Peter Borsje
Fabrizio Lodi Hans Pronk Jan Schulze
FARA Gießen GmbH Hans-Jörg Nett Jan Stoltenberg-Lerche
FeralChild Hans-Martin Zedlitz Janne Tompuri
First Choice Auto’s Harald Dosch Jannis Schulte
Florian Rienhardt Harri Salokorpi Jari Loukasmäki
Forum64. de Harry Culpan Jason Smith
Francesco Baldassarri Harry Venema Javier Gonzalez Gonzalez
Frank Fechner Heath Gallimore Jean-Paul Lauque
Frank Glaush Heinz Roesner Jeffrey van der Schilden
Frank Gulasch Heinz Stampfli Jens Schneider

186

Jens-Uwe Wessling Kenneth Joensson Marco Cappellari
Jesse DiSimone Kevin Edwards Marco Rivela
Jett Adams Kevin Thomasson Marco van de Water
Johan Arneklev Kim Jorgensen Marcus Gerards
Johan Berntsson Kim Rene Jensen Marcus Herbert
Johan Svensson Kimmo Hamalainen Marcus Linkert
Johannes Fitz Konrad Buryło Marek Pernicky
John Cook Kosmas Einbrodt Mario Esposito
John Deane Kurt Klemm Mario Fetka
John Dupuis Lachlan Glaskin Mario Teschke
John Nagi Large bits collider Mariusz Tymków
John Rorland Lars Becker Mark Adams
John Sargeant Lars Edelmann Mark Anderson
John Traeholt Lars Slivsgaard Mark Green
Jon Sandelin Lasse Lambrecht Mark Hucker
Jonas Bernemann Lau Olivier Mark Leitiger
Jonathan Prosise Lee Chatt Mark Spezzano
Joost Honig Loan Leray Mark Watkin
Jordi Pakey-Rodriguez Lorenzo Quadri Marko Rizvic
Jöre Weber Lorenzo Travagli Markus Bieler
Jörg Jungermann Lorin Millsap Markus Bonet
Jörg Schaeffer Lothar James Foss Markus Dauberschmidt
Jörg Weese Lothar Serra Mari Markus Fehr
Josef Hesse Luca Papinutti Markus Fuchs
Josef Soucek Ludek Smetana Markus Guenther-Hirn
Josef Stohwasser Lukas Burger Markus Liukka
Joseph Clifford Lutz-Peter Buchholz Markus Merz
Joseph Gerth Luuk Spaetgens Markus Roesgen
Jovan Crnjanin Mad Web Skills Markus Uttenweiler
Juan Pablo Schisano MaDCz Martin Bauhuber
Juan S. Cardona Iguina Magnus Wiklander Martin Benke
JudgeBeeb Maik Diekmann Martin Gendera
Juliussen Olsen Malte Mundt Martin Groß
Juna Luis Fernandez Garcia Manfred Wittemann Martin Gutenbrunner
Jürgen Endras Manuel Beckmann Martin Johansen
Jürgen Herm Stapelberg Manzano Mérida Martin Marbach
Jyrki Laurila Marc ”3D-vice” Schmitt Martin Sonnleitner
Kai Pernau Marc Bartel Martin Steffen
Kalle Pöyhönen Marc Jensen Marvin Hardy
Karl Lamford Marc Schmidt Massimo Villani
Karl-Heinz Blum Marc Theunissen Mathias Dellacherie
Karsten Engstler Marc Tutor Mathieu Chouinard
Karsten Westebbe Marc Wink Matthew Adams
katarakt Marcel Buchtmann Matthew Browne
Keith McComb Marcel Kante Matthew Carnevale
Kenneth Dyke Marco Beckers Matthew Palmer

187

Matthew Santos Michele Porcu Paul Jackson
Matthias Barthel Miguel Angel Rodriguez Jodar Paul Johnson
Matthias Dolenc Mikael Lund Paul Kuhnast (mindrail)
Matthias Fischer Mike Betz Paul Massay
Matthias Frey Mike Kastrantas Paul Westlake
Matthias Grandis Mike Pikowski Paul Woegerer
Matthias Guth Mikko Hämäläinen Pauline Brasch
Matthias Lampe Mikko Suontausta Paulo Apolonia
Matthias Meier Mirko Roller Pete Collin
Matthias Mueller Miroslav Karkus Pete of Retrohax.net
Matthias Nofer Morgan Antonsson Peter Eliades
Matthias Schonder Moritz Peter Gries
Maurice Al-Khaliedy Morten Nielsen Peter Habura
Max Ihlenfeldt MUBIQUO APPS,SL Peter Herklotz
Meeso Kim Myles Cameron-Smith Peter Huyoff
Michael Dailly Neil Moore Peter Knörzer
Michael Dötsch Nelson Peter Leswell
Michael Dreßel neoman Peter Weile
Michael Fichtner Nicholas Melnick Petri Alvinen
Michael Fong Nikolaj Brinch Jørgensen Philip Marien
Michael Geoffrey Stone Nils Andreas Philip Timmermann
Michael Gertner Nils Eilers Philipp Rudin
Michael Grün Nils Hammerich Pierre Kressmann
Michael Habel Nils77 Pieter Labie
Michael Härtig Norah Smith Piotr Kmiecik
Michael Haynes Norman King Power-on.at
Michael J Burkett Normen Zoch Przemysław Safonow
Michael Jensen Olaf Grunert Que Labs
Michael Jurisch Ole Eitels R Welbourn
Michael Kappelgaard Oliver Boerner R-Flux
Michael Kleinschmidt Oliver Brüggmann Rafał Michno
Michael Lorenz Oliver Graf Rainer Kappler
Michael Mayerhofer Oliver Smith Rainer Kopp
Michael Nurney Olivier Bori Rainer Weninger
Michael Rasmussen ONEPSI LLC Ralf Griewel
Michael Richmond oRdYNe Ralf Pöscha
Michael Sachse Osaühing Trioflex Ralf Reinhardt
Michael Sarbak OSHA-PROS USA Ralf Schenden
Michael Schneider Padawer Ralf Smolarek
Michael Scholz Patrick Becher Ralf Zenker
Michael Timm Patrick Bürckstümmer Ralph Bauer
Michael Traynor Patrick de Zoete Ralph Wernecke
Michael Whipp Patrick Toal Rédl Károly
Michal Ursiny Patrick Vogt Reiner Lanowski
Michele Chiti Paul Alexander Warren Remi Veilleux
Michele Perini Paul Gerhardt (KONG) Riccardo Bianchi

188

Richard Englert Sigurbjorn Larusson Thomas Niemann
Richard Good Sigurdur Finnsson Thomas Scheelen
Richard Menedetter Simon Lawrence Thomas Schilling
Richard Sopuch Simon Wolf Thomas Tahsin-Bey
Rick Reynolds spreen.digital Thomas Walter
Rico Gruninger Stefan Haberl Thomas Wirtzmann
Rob Dean Stefan Kramperth Thorsten Knoll
Robert Bernardo Stefan Richter Thorsten Nolte
Robert Eaglestone Stefan Schultze Tim Krome
Robert Grasböck Stefan Sonnek Tim Waite
Robert Miles Stefan Theil Timo Weirich
Robert Schwan Stefan Vrampe Timothy Blanks
Robert Shively Stefano Canali Timothy Henson
Robert Tangmar Stefano Mozzi Timothy Prater
Robert Trangmar Steffen Reiersen Tobias Butter
Rodney Xerri Stephan Bielmann Tobias Heim
Roger Olsen Stephen Jones Tobias Köck
Roger Pugh Stephen Kew Tobias Lüthi
Roland Attila Kett Steve Gray Tommi Vasarainen
Roland Evers Steve Kurlin Toni Ammer
Roland Schatz Steve Lemieux Tore Olsen
Rolf Hass Steven Combs Torleif Strand
Ronald Cooper Stewart Dunn Torsten Schröder
Ronald Hunn Stuart Marsh Tuan Nguyen
Ronny Hamida Sven Neumann Uffe Jakobsen
Ronny Preiß Sven Stache Ulrich Hintermeier
Roy van Zundert Sven Sternberger Ulrich Nieland
Rüdiger Wohlfromm Sven Wiegand Ulrik Kruse
Ruediger Schlenter Szabolcs Bence Urban Lindeskog
Rutger WIllemsen Tantrumedia Limited Ursula Förstle
Sampo Peltonen Techvana Operations Ltd. Uwe Anfang
Sarmad Gilani Teddy Turmeaux Uwe Boschanski
SAS74 Teemu Korvenpää Vedran Vrbanc
Sascha Hesse The Games Foundation Verm Project
Scott Halman Thierry Supplisson Wayne Rittimann
Scott Hollier Thieu-Duy Thai Wayne Sander
Scott Robison Thomas Bierschenk Wayne Steele
Sebastian Baranski Thomas Edmister Who Knows
Sebastian Bölling Thomas Frauenknecht Winfried Falkenhahn
Sebastian Felzmann Thomas Gitzen Wolfgang Becker
Sebastian Lipp Thomas Gruber Wolfgang Stabla
Sebastian Rakel Thomas Haidler Worblehat
Şemseddin Moldibi Thomas Jager www.patop69.net
Seth Morabito Thomas Karlsen Yan B
Shawn McKee Thomas Laskowski Zoltan Markus
Siegfried Hartmann Thomas Marschall Zsolt Zsila
Zytex Online Store

189

190

Bibliography

192

[1] L. Soares and M. Stumm, “Flexsc: Flexible system call scheduling with exception-
less system calls.” in Osdi, vol. 10, 2010, pp. 1–8.

[2] N. Montfort, P. Baudoin, J. Bell, I. Bogost, J. Douglass, M. C. Marino, M. Mateas,
C. Reas, M. Sample, and N. Vawter, 10 PRINT CHR $(205.5+ RND (1));: GOTO 10.
MIT Press, 2012.

[3] Actraiser, “Vic-ii for beginners: Screen modes, cheaper by the
dozen,” 2013. [Online]. Available: http://dustlayer.com/vic-ii/2013/4/26/
vic-ii-for-beginners-screen-modes-cheaper-by-the-dozen

193

http://dustlayer.com/vic-ii/2013/4/26/vic-ii-for-beginners-screen-modes-cheaper-by-the-dozen
http://dustlayer.com/vic-ii/2013/4/26/vic-ii-for-beginners-screen-modes-cheaper-by-the-dozen

194

INDEX

196

$00 (STOPTX), 116
$01 (STARTTX), 116
$D0 (RXNORMAL), 116
$D4 (DEBUGVIC), 116
$DC (DEBUGCPU), 116
$DE (RXONLYONE), 116
$F1 (FRAME1K), 116
$F2 (FRAME2K), 116

Amiga™ style audio, 84
audio cross-bar switch, 138
audio mixer, 138

BASIC 65 Commands
BANK, 4
DMA, 4

colour RAM, 26
cross-bar switch, audio, 138

DEBUGCPU, 116
DEBUGVIC, 116
Digital Audio, 84
digital video, 21
DMA

Inline DMA Lists, 83
DMA Audio, 84

Floppy DMA, 126
FRAME1K, 116
FRAME2K, 116

Hot Registers, 28

IEC Controller Commands, 146
IMDH™, 20
Inline DMA Lists, 83
Integrated Marvellous Digital

Hookup™, 20

light pen, 137
Line Drawing, 79

DMA Option Bytes, 79

mixer, audio, 138

MOD-file style audio, 84

Registers
$D000, 49
$D001, 49
$D002, 49
$D003, 49
$D004, 49
$D005, 49
$D006, 49
$D007, 50
$D008, 50
$D009, 50
$D00A, 50
$D00B, 50
$D00C, 50
$D00D, 50
$D00E, 50
$D00F, 50
$D010, 50
$D011, 50
$D012, 50
$D013, 50
$D014, 50
$D015, 50
$D016, 50
$D017, 50
$D018, 50
$D019, 50
$D01A, 50
$D01B, 50
$D01C, 50
$D01D, 50
$D01E, 50
$D01F, 50
$D020, 50, 52, 54
$D021, 50, 52, 54
$D022, 50, 52, 54
$D023, 50, 52, 54
$D024, 50, 52, 54
$D025, 50, 52, 54
$D026, 50, 52, 54
$D027, 50

197

$D028, 50
$D029, 50
$D02A, 50
$D02B, 50
$D02C, 50
$D02D, 50
$D02E, 50
$D02F, 52, 54
$D030, 50, 52
$D031, 52
$D033, 52
$D034, 52
$D035, 52
$D036, 52
$D037, 52
$D038, 52
$D039, 52
$D03A, 52
$D03B, 52
$D03C, 52
$D03D, 52
$D03E, 52
$D03F, 53
$D040, 53
$D041, 53
$D042, 53
$D043, 53
$D044, 53
$D045, 53
$D046, 53
$D047, 53
$D048, 54
$D049, 54
$D04A, 54
$D04B, 55
$D04C, 55
$D04D, 55
$D04E, 55
$D04F, 55
$D050, 55
$D051, 55
$D052, 55

$D053, 55
$D054, 55
$D055, 55
$D056, 55
$D057, 55
$D058, 55
$D059, 55
$D05A, 55
$D05B, 55
$D05C, 55
$D05D, 55
$D05E, 55
$D05F, 55
$D060, 55
$D061, 55
$D062, 55
$D063, 55
$D064, 55
$D065, 55
$D068, 55
$D069, 55
$D06A, 55
$D06B, 55
$D06C, 55
$D06D, 55
$D06E, 55
$D06F, 55
$D070, 55
$D071, 55
$D072, 55
$D073, 55
$D074, 55
$D075, 56
$D076, 56
$D077, 56
$D078, 56
$D079, 56
$D07A, 56
$D07B, 56
$D07C, 56
$D080, 128
$D081, 128

198

$D082, 128
$D083, 128
$D084, 128
$D085, 128
$D086, 128
$D087, 128
$D088, 128
$D089, 128
$D08A, 128
$D100 – $D1FF, 53
$D200 – $D2FF, 53
$D300 – $D3FF, 53
$D400, 63
$D401, 63
$D402, 63
$D403, 63
$D404, 63
$D405, 63
$D406, 63
$D407, 63
$D408, 63
$D409, 63
$D40A, 63
$D40B, 63
$D40C, 63
$D40D, 63
$D40E, 63
$D40F, 63
$D410, 63
$D411, 63
$D412, 63
$D413, 63
$D414, 63
$D415, 63
$D416, 63
$D417, 63
$D418, 63
$D419, 63
$D41A, 63
$D41B, 63
$D41C, 63
$D600, 101

$D601, 101
$D602, 101
$D603, 101
$D604, 101
$D605, 101
$D606, 101
$D609, 102
$D60A, 102
$D60B, 102
$D60C, 102
$D60D, 102
$D60E, 102
$D60F, 102
$D610, 102
$D611, 102
$D612, 102
$D615, 102
$D616, 102
$D617, 102
$D618, 102
$D619, 102
$D61A, 102
$D61D, 102
$D61E, 102
$D620, 102
$D621, 102
$D622, 102
$D623, 102
$D625, 102
$D626, 102
$D627, 102
$D628, 102
$D629, 102
$D63C, 63
$D680, 135
$D681, 135
$D682, 135
$D683, 135
$D684, 135
$D686, 135
$D68A, 131, 135
$D68B, 131

199

$D68C, 131
$D68D, 131
$D68E, 131
$D68F, 131
$D690, 131
$D691, 131
$D692, 131
$D693, 131
$D694, 152
$D695, 152
$D697, 152
$D698, 152
$D699, 153
$D69A, 153
$D6A0, 129
$D6A1, 131
$D6A2, 130
$D6AE, 135
$D6AF, 135
$D6B0, 137
$D6B1, 137
$D6B2, 137
$D6B3, 137
$D6B4, 137
$D6B5, 137
$D6B7, 137
$D6B8, 137
$D6B9, 137
$D6BA, 137
$D6BB, 137
$D6BC, 137
$D6BD, 137
$D6BE, 138
$D6C0, 138
$D6E0, 114
$D6E1, 114
$D6E2, 114
$D6E3, 114
$D6E4, 114
$D6E5, 114
$D6E6, 114
$D6E7, 114

$D6E8, 114
$D6E9, 114
$D6EA, 114
$D6EB, 114
$D6EC, 114
$D6ED, 114
$D6EE, 114
$D6F4, 141
$D6F5, 141
$D6F8, 141
$D6F9, 141
$D6FA, 141
$D6FB, 141
$D6FC, 141
$D6FD, 141
$D700, 86
$D701, 86
$D702, 86
$D703, 86
$D704, 86
$D705, 86
$D706, 86
$D70E, 86
$D711, 86, 141
$D71C, 86
$D71D, 86
$D71E, 87
$D71F, 87
$D720, 87
$D721, 87
$D722, 87
$D723, 87
$D724, 87
$D725, 87
$D726, 87
$D727, 87
$D728, 87
$D729, 87
$D72A, 87
$D72B, 87
$D72C, 87
$D72D, 87

200

$D72E, 87
$D72F, 87
$D730, 87
$D731, 87
$D732, 87
$D733, 87
$D734, 87
$D735, 87
$D736, 87
$D737, 87
$D738, 87
$D739, 87
$D73A, 87
$D73B, 87
$D73C, 87
$D73D, 87
$D73E, 87
$D73F, 87
$D740, 87
$D741, 87
$D742, 87
$D743, 87
$D744, 87
$D745, 87
$D746, 87
$D747, 88
$D748, 88
$D749, 88
$D74A, 88
$D74B, 88
$D74C, 88
$D74D, 88
$D74E, 88
$D74F, 88
$D750, 88
$D751, 88
$D752, 88
$D753, 88
$D754, 88
$D755, 88
$D756, 88
$D757, 88

$D758, 88
$D759, 88
$D75A, 88
$D75B, 88
$D75C, 88
$D75D, 88
$D75E, 88
$D75F, 88
$DC00, 93
$DC01, 93
$DC02, 93
$DC03, 93
$DC04, 93
$DC05, 93
$DC06, 93
$DC07, 93
$DC08, 93
$DC09, 93
$DC0A, 93
$DC0B, 93
$DC0C, 93
$DC0D, 93
$DC0E, 93
$DC0F, 93
$DC10, 96
$DC11, 96
$DC12, 96
$DC13, 96
$DC14, 96
$DC15, 96
$DC16, 96
$DC17, 96
$DC18, 96
$DC19, 96
$DC1A, 96
$DC1B, 96
$DC1C, 96
$DC1D, 96
$DC1E, 96
$DC1F, 96
$DD00, 94
$DD01, 94

201

$DD02, 94
$DD03, 94
$DD04, 94
$DD05, 94
$DD06, 94
$DD07, 94
$DD08, 94
$DD09, 94
$DD0B, 94
$DD0C, 95
$DD0D, 95
$DD0E, 95
$DD0F, 95
$DD10, 97
$DD11, 97
$DD12, 97
$DD13, 97
$DD14, 97
$DD15, 97
$DD16, 97
$DD17, 97
$DD18, 97
$DD19, 97
$DD1A, 97
$DD1B, 97
$DD1C, 97
$DD1D, 97
$DD1E, 98
$DD1F, 98
53504 – 53759, 53
53760 – 54015, 53
54016 – 54271, 53
53248, 49
53249, 49
53250, 49
53251, 49
53252, 49
53253, 49
53254, 49
53255, 50
53256, 50
53257, 50

53258, 50
53259, 50
53260, 50
53261, 50
53262, 50
53263, 50
53264, 50
53265, 50
53266, 50
53267, 50
53268, 50
53269, 50
53270, 50
53271, 50
53272, 50
53273, 50
53274, 50
53275, 50
53276, 50
53277, 50
53278, 50
53279, 50
53280, 50, 52, 54
53281, 50, 52, 54
53282, 50, 52, 54
53283, 50, 52, 54
53284, 50, 52, 54
53285, 50, 52, 54
53286, 50, 52, 54
53287, 50
53288, 50
53289, 50
53290, 50
53291, 50
53292, 50
53293, 50
53294, 50
53295, 52, 54
53296, 50, 52
53297, 52
53299, 52
53300, 52

202

53301, 52
53302, 52
53303, 52
53304, 52
53305, 52
53306, 52
53307, 52
53308, 52
53309, 52
53310, 52
53311, 53
53312, 53
53313, 53
53314, 53
53315, 53
53316, 53
53317, 53
53318, 53
53319, 53
53320, 54
53321, 54
53322, 54
53323, 55
53324, 55
53325, 55
53326, 55
53327, 55
53328, 55
53329, 55
53330, 55
53331, 55
53332, 55
53333, 55
53334, 55
53335, 55
53336, 55
53337, 55
53338, 55
53339, 55
53340, 55
53341, 55
53342, 55

53343, 55
53344, 55
53345, 55
53346, 55
53347, 55
53348, 55
53349, 55
53352, 55
53353, 55
53354, 55
53355, 55
53356, 55
53357, 55
53358, 55
53359, 55
53360, 55
53361, 55
53362, 55
53363, 55
53364, 55
53365, 56
53366, 56
53367, 56
53368, 56
53369, 56
53370, 56
53371, 56
53372, 56
53376, 128
53377, 128
53378, 128
53379, 128
53380, 128
53381, 128
53382, 128
53383, 128
53384, 128
53385, 128
53386, 128
54272, 63
54273, 63
54274, 63

203

54275, 63
54276, 63
54277, 63
54278, 63
54279, 63
54280, 63
54281, 63
54282, 63
54283, 63
54284, 63
54285, 63
54286, 63
54287, 63
54288, 63
54289, 63
54290, 63
54291, 63
54292, 63
54293, 63
54294, 63
54295, 63
54296, 63
54297, 63
54298, 63
54299, 63
54300, 63
54784, 101
54785, 101
54786, 101
54787, 101
54788, 101
54789, 101
54790, 101
54793, 102
54794, 102
54795, 102
54796, 102
54797, 102
54798, 102
54799, 102
54800, 102
54801, 102

54802, 102
54805, 102
54806, 102
54807, 102
54808, 102
54809, 102
54810, 102
54813, 102
54814, 102
54816, 102
54817, 102
54818, 102
54819, 102
54821, 102
54822, 102
54823, 102
54824, 102
54825, 102
54844, 63
54912, 135
54913, 135
54914, 135
54915, 135
54916, 135
54918, 135
54922, 131, 135
54923, 131
54924, 131
54925, 131
54926, 131
54927, 131
54928, 131
54929, 131
54930, 131
54931, 131
54932, 152
54933, 152
54935, 152
54936, 152
54937, 153
54938, 153
54944, 129

204

54945, 131
54946, 130
54958, 135
54959, 135
54960, 137
54961, 137
54962, 137
54963, 137
54964, 137
54965, 137
54967, 137
54968, 137
54969, 137
54970, 137
54971, 137
54972, 137
54973, 137
54974, 138
54976, 138
55008, 114
55009, 114
55010, 114
55011, 114
55012, 114
55013, 114
55014, 114
55015, 114
55016, 114
55017, 114
55018, 114
55019, 114
55020, 114
55021, 114
55022, 114
55028, 141
55029, 141
55032, 141
55033, 141
55034, 141
55035, 141
55036, 141
55037, 141

55040, 86
55041, 86
55042, 86
55043, 86
55044, 86
55045, 86
55046, 86
55054, 86
55057, 86, 141
55068, 86
55069, 86
55070, 87
55071, 87
55072, 87
55073, 87
55074, 87
55075, 87
55076, 87
55077, 87
55078, 87
55079, 87
55080, 87
55081, 87
55082, 87
55083, 87
55084, 87
55085, 87
55086, 87
55087, 87
55088, 87
55089, 87
55090, 87
55091, 87
55092, 87
55093, 87
55094, 87
55095, 87
55096, 87
55097, 87
55098, 87
55099, 87
55100, 87

205

55101, 87
55102, 87
55103, 87
55104, 87
55105, 87
55106, 87
55107, 87
55108, 87
55109, 87
55110, 87
55111, 88
55112, 88
55113, 88
55114, 88
55115, 88
55116, 88
55117, 88
55118, 88
55119, 88
55120, 88
55121, 88
55122, 88
55123, 88
55124, 88
55125, 88
55126, 88
55127, 88
55128, 88
55129, 88
55130, 88
55131, 88
55132, 88
55133, 88
55134, 88
55135, 88
56320, 93
56321, 93
56322, 93
56323, 93
56324, 93
56325, 93
56326, 93

56327, 93
56328, 93
56329, 93
56330, 93
56331, 93
56332, 93
56333, 93
56334, 93
56335, 93
56336, 96
56337, 96
56338, 96
56339, 96
56340, 96
56341, 96
56342, 96
56343, 96
56344, 96
56345, 96
56346, 96
56347, 96
56348, 96
56349, 96
56350, 96
56351, 96
56576, 94
56577, 94
56578, 94
56579, 94
56580, 94
56581, 94
56582, 94
56583, 94
56584, 94
56585, 94
56587, 94
56588, 95
56589, 95
56590, 95
56591, 95
56592, 97
56593, 97

206

56594, 97
56595, 97
56596, 97
56597, 97
56598, 97
56599, 97
56600, 97
56601, 97
56602, 97
56603, 97
56604, 97
56605, 97
56606, 98
56607, 98
ABTPALSEL, 55, 56
ACCESSKEY, 102
ADDRBANK, 86
ADDRLSB, 86, 88
ADDRLSBTRIG, 86
ADDRMB, 86, 88
ADDRMSB, 86
ALGO, 128
ALPHADELAY, 55, 56
ALPHEN, 56
ALRM, 93, 95
ALRMAMPM, 97, 98
ALRMHOUR, 96–98
ALRMJIF, 96–98
ALRMMIN, 96–98
ALRMSEC, 96–98
ALT, 128
ASCIIKEY, 102, 103
ATTR, 53
AUDBLKTO, 86, 88
AUDEN, 88
AUDWRBLK, 88
AUTO2XSEL, 135
B1ADEVN, 52
B1ADODD, 52
B1PIX, 53
B2ADEVN, 52
B2ADODD, 52

B2PIX, 53
B3ADEVN, 52
B3ADODD, 52
B3PIX, 53
B4ADEVN, 52
B4ADODD, 52
B4PIX, 53
B5ADEVN, 52
B5ADODD, 52
B5PIX, 53
B6ADEVN, 52
B6ADODD, 52
B6PIX, 53
B7ADEVN, 52
B7ADODD, 52
B7PIX, 53
BASHDDR, 102, 103
BBDRPOS, 54–56
BCST, 114
BITPBANK, 56
BLKD, 88
BLNK, 51
BMM, 51
BNPIX, 53
BOARDMINOR, 102, 103
BORDERCOL, 50–54, 56
BP16ENS, 55, 56
BPCOMP, 52, 53
BPM, 53
BPX, 52, 53
BPY, 52, 53
BSP, 50, 51
BTPALSEL, 55, 56
BUSY, 128
BXADEVN, 52, 53
BXADODD, 52, 53
C128FAST, 51
CALXDELTALSB, 137, 138
CALXSCALELSB, 137, 138
CALXSCALEMSB, 137, 138
CALYDELTALSB, 137, 138
CALYDELTAMSB, 137, 138

207

CALYSCALELSB, 137, 138
CALYSCALEMSB, 137, 138
CB, 50, 51
CDC00, 135
CH0RVOL, 86, 88
CH1BADDRC, 87
CH1BADDRL, 87
CH1BADDRM, 87
CH1CURADDRC, 87
CH1CURADDRL, 87
CH1CURADDRM, 87
CH1FREQC, 87
CH1FREQL, 87
CH1FREQM, 87
CH1RVOL, 86, 88
CH1SBITS, 87
CH1TADDRL, 87
CH1TADDRM, 87
CH1TMRADDRC, 87
CH1TMRADDRL, 87
CH1TMRADDRM, 87
CH1VOLUME, 87
CH2BADDRC, 87
CH2BADDRL, 87
CH2BADDRM, 87
CH2CURADDRC, 88
CH2CURADDRL, 88
CH2CURADDRM, 88
CH2FREQC, 87
CH2FREQL, 87
CH2FREQM, 87
CH2LVOL, 87, 88
CH2SBITS, 87
CH2TADDRL, 88
CH2TADDRM, 88
CH2TMRADDRC, 88
CH2TMRADDRL, 88
CH2TMRADDRM, 88
CH2VOLUME, 88
CH3BADDRC, 88
CH3BADDRL, 88
CH3BADDRM, 88

CH3CURADDRC, 88
CH3CURADDRL, 88
CH3CURADDRM, 88
CH3FREQC, 88
CH3FREQL, 88
CH3FREQM, 88
CH3LVOL, 87, 88
CH3SBITS, 88
CH3TADDRL, 88
CH3TADDRM, 88
CH3TMRADDRC, 88
CH3TMRADDRL, 88
CH3TMRADDRM, 88
CH3VOLUME, 88
CHARPTRBNK, 55, 56
CHARPTRLSB, 55, 56
CHARPTRMSB, 55, 56
CHARSZ, 101
CHARY16, 56
CHR16, 56
CHRCOUNT, 55, 56
CHRXSCL, 55, 56
CHRYSCL, 55, 56
CHXBADDRC, 87, 89
CHXBADDRL, 87, 89
CHXBADDRM, 87, 89
CHXCURADDRC, 87, 89
CHXCURADDRL, 87, 89
CHXCURADDRM, 87, 89
CHXEN, 89
CHXFREQC, 87, 89
CHXFREQL, 87, 89
CHXFREQM, 87, 89
CHXLOOP, 89
CHXSBITS, 87, 89
CHXSGN, 89
CHXSINE, 89
CHXSTP, 89
CHXTADDRL, 87, 89
CHXTADDRM, 87, 89
CHXTMRADDRC, 87, 89
CHXTMRADDRL, 87, 89

208

CHXTMRADDRM, 87, 89
CHXVOLUME, 87, 89
CLOCK, 128
CMDANDSTAT, 135
COLPTRLSB, 55, 56
COLPTRMSB, 55, 56
COMMAND, 114, 128
CONN41, 103
CRAM2K, 53
CRC, 128
CROM9, 53
CSEL, 51
D0D64, 131
D0IMG, 131
D0MD, 131
D0P, 131
D0STARTSEC0, 131
D0STARTSEC1, 131
D0STARTSEC2, 131
D0STARTSEC3, 131
D0WP, 131
D1D64, 132
D1IMG, 132
D1MD, 132
D1P, 132
D1STARTSEC0, 131, 132
D1STARTSEC1, 131, 132
D1STARTSEC2, 131, 132
D1STARTSEC3, 131, 132
D1WP, 132
DATA, 101, 128, 153
DATALOG0, 152, 153
DATALOG1, 152, 153
DATARATE, 130
DBGDIR, 130
DBGMOTORA, 130
DBGWDATA, 130
DBGWGATE, 130
DBLRR, 56
DD00DELAY, 97, 98
DDRA, 93–95
DDRB, 93–95

DEBUGC, 56
DENSITY, 130
DEVNUM, 153
DIATN, 153
DIGILEFTLSB, 141
DIGILEFTMSB, 141
DIGILLSB, 141
DIGILMSB, 141
DIGIRIGHTLSB, 141
DIGIRIGHTMSB, 141
DIGIRLSB, 141
DIGIRMSB, 141
DIR, 128
DISKIN, 128
DISPROWS, 56, 57
DIVISOR, 101
DRQ, 128
DRXD, 114
DRXDV, 114
DS, 128
DSKCHG, 128
ECM, 51
EN018B, 89
ENV2ATTDUR, 63
ENV2DECDUR, 63
ENV2RELDUR, 63
ENV2SUSDUR, 63
ENV3ATTDUR, 63
ENV3DECDUR, 63
ENV3OUT, 63
ENV3RELDUR, 63
ENV3SUSDUR, 63
ENVXATTDUR, 63, 64
ENVXDECDUR, 63, 64
ENVXRELDUR, 63, 64
ENVXSUSDUR, 63, 64
EQ, 128
ETRIG, 86, 89
ETRIGMAPD, 86, 89
EV1, 138
EV2, 138
EXGLYPH, 57

209

EXTIRQS, 57
EXTSYNC, 53
FAST, 53
FCLRHI, 57
FCLRLO, 57
FCOLMCM, 57
FDC2XSEL, 135
FDCENC, 135
FDCTIBEN, 135
FDCVARSPD, 136
FILLVAL, 135, 136
FLG, 93, 95
FLTRBDPASS, 64
FLTRCUTFRQHI, 63, 64
FLTRCUTFRQLO, 63, 64
FLTRCUTV3, 64
FLTREXTINP, 64
FLTRHIPASS, 64
FLTRLOPASS, 64
FLTRRESON, 63, 64
FLTRVOL, 63, 64
FLTRVXOUT, 64
FNRASTERLSB, 55, 57
FNRASTERMSB, 55, 57
FNRST, 57
FNRSTCMP, 57
FREE, 128
FRMERR, 101
GESTUREDIR, 138
GESTUREID, 138
H1280, 53
H640, 53
HDSCL, 103
HDSDA, 103
HOTREG, 57
HPOS, 52, 53
HSYNCP, 57
IFRXIRQ, 101
IFRXNMI, 101
IFTXIRQ, 101
IFTXNMI, 101
ILP, 51

IMALRM, 97, 98
IMFLG, 97, 98
IMODA, 93, 95
IMODB, 93, 95
IMRXIRQ, 101
IMRXNMI, 101
IMSP, 97, 98
IMTB, 97, 98
IMTXIRQ, 101
IMTXNMI, 101
INDEX, 128
INT, 53
IR, 93, 95
IRQ, 129
IRQEN, 153
IRQFLAG, 153
IRQRDY, 153
IRQRDYEN, 153
IRQRX, 153
IRQRXEN, 153
IRQTO, 153
IRQTOEN, 153
ISBC, 51
ISRCLR, 93, 95
ISSC, 51
J21H, 102, 103
J21HDDR, 102, 103
J21L, 102, 103
J21LDDR, 102, 103
JOYSWAP, 103
KEY, 52–54, 57
KEYLEDENA, 103
KEYLEDREG, 102, 103
KEYLEDVAL, 102, 103
KEYLEFT, 103
KEYQUEUE, 103
KEYUP, 103
KSCNRATE, 102, 103
LED, 129
LINESTEPLSB, 55, 57
LINESTEPMSB, 55, 57
LJOYA, 103

210

LJOYB, 103
LOAD, 93, 95
LOST, 129
LPX, 50, 51
LPY, 50, 51
M65MODEL, 102, 103
MACADDR2, 114
MACADDR3, 114
MACADDR4, 114
MACADDR5, 114
MACADDR6, 114
MACADDRX, 114, 115
MALT, 103
MAPEDPAL, 55, 57
MC1, 50–52, 54, 57
MC2, 50–52, 54, 57
MC3, 50–52, 54, 57
MCAPS, 103
MCM, 51
MCST, 115
MCTRL, 103
MDISABLE, 103
MIIMPHY, 114, 115
MIIMREG, 114, 115
MIIMVLSB, 114, 115
MIIMVMSB, 114, 115
MISBC, 51
MISSC, 51
MIXREGDATA, 141
MIXREGSEL, 141, 142
MLSHFT, 103
MMEGA, 103
MODKEYALT, 104
MODKEYCAPS, 104
MODKEYCTRL, 104
MODKEYLSHFT, 104
MODKEYMEGA, 104
MODKEYRSHFT, 104
MODKEYSCRL, 104
MONO, 54
MOTOR, 129
MRIRQ, 51

MRSHFT, 104
MSCRL, 104
NOBUF, 129
NOBUGCOMPAT, 57
NOCRC, 115
NOMIX, 89
NOPROM, 115
NORRDEL, 57
OMODA, 93, 95
OMODB, 93, 95
OSC3RNG, 63, 64
OSKALT, 104
OSKDEBUG, 104
OSKDIM, 104
OSKEN, 104
OSKTOP, 104
OSKZEN, 104
OSKZON, 104
PADDLE1, 63, 64
PADDLE2, 63, 64
PAL, 54
PALBLUE, 53, 54
PALEMU, 57
PALGREEN, 53, 54
PALNTSC, 57
PALRED, 53, 54
PBONA, 93, 95
PBONB, 93, 95
PCODE, 128, 129
PETSCIIKEY, 102, 104
PORTA, 93–95
PORTB, 93–95
PORTF, 102, 104
PORTFDDR, 102, 104
POTAX, 102, 104
POTAY, 102, 104
POTBX, 102, 104
POTBY, 102, 104
PRESENT, 153
PROT, 129, 153
PTYEN, 101
PTYERR, 101

211

PTYEVEN, 101
PWMPDM, 142
RASCMP, 56, 57
RASCMPMSB, 56, 57
RASLINE0, 55, 57
RASTERHEIGHT, 55, 57
RC, 50, 51
RC8, 51
RCENABLED, 115
RDCMD, 129
RDREQ, 129
READBACKLSB, 141, 142
READBACKMSB, 141, 142
REALHW, 105
RESERVED, 58
RIRQ, 51
RMODA, 94, 95
RMODB, 94, 95
RNF, 129
ROM8, 54
ROMA, 54
ROMC, 54
ROME, 54
RSEL, 51
RST, 51, 115
RST41, 105
RSTDELEN, 58
RUN, 129
RXBF, 114, 115
RXBLKD, 115
RXEN, 101
RXOVRRUN, 101
RXPH, 114, 115
RXQ, 115
RXQEN, 115
RXRDY, 101
S1X, 49
S1Y, 49
S2X, 49
S2Y, 49
S3X, 49
S3Y, 50

S4X, 50
S4Y, 50
S5X, 50
S5Y, 50
S6X, 50
S6Y, 50
S7X, 50
S7Y, 50
SBC, 50, 51
SCM, 50, 51
SCREENCOL, 50–52, 54, 58
SCRNPTRBNK, 55, 58
SCRNPTRLSB, 55, 58
SCRNPTRMB, 55, 58
SCRNPTRMSB, 55, 58
SDBDRWDLSB, 55, 58
SDBDRWDMSB, 55, 58
SDBSH, 105
SDCLK, 105
SDCS, 105
SDDATA, 105
SDR, 93–95
SE, 50, 51
SECTOR, 128, 129
SECTOR0, 135, 136
SECTOR1, 135, 136
SECTOR2, 135, 136
SECTOR3, 135, 136
SEXX, 50, 51
SEXY, 50, 52
SHDEMU, 58
SIDE, 128, 129
SIDMODE, 63, 64
SILENT, 132
SMTH, 58
SNX, 49, 52
SNY, 49, 52
SP, 94, 95
SPMOD, 94, 95
SPR16EN, 55, 58
SPR1COL, 50
SPR2COL, 50

212

SPR3COL, 50
SPR4COL, 50
SPR5COL, 50
SPR6COL, 50
SPR7COL, 50
SPRALPHAVAL, 56, 58
SPRBPMEN, 54, 55, 58
SPRENALPHA, 55, 58
SPRENV400, 56, 58
SPRH640, 58
SPRHGHT, 55, 58
SPRHGTEN, 55, 58
SPRMC0, 50, 52, 54, 58
SPRMC1, 50, 52, 54, 58
SPRNCOL, 50, 52
SPRPALSEL, 55, 58
SPRPTR16, 58
SPRPTRADRLSB, 55, 58
SPRPTRADRMSB, 55, 58
SPRPTRBNK, 55, 58
SPRTILEN, 55, 58
SPRX64EN, 55, 58
SPRXSMSBS, 55, 59
SPRYADJ, 55, 59
SPRYMSBS, 56, 59
SPRYSMSBS, 56, 59
SPTRCONT, 59
SSC, 50, 52
STC, 153
STD, 153
STDDIR, 153
STEP, 128, 129
STNODEV, 153
STNOEOI, 153
STRM, 115
STRTA, 94, 95
STRTB, 94, 95
STSRQ, 153
STTO, 153
STVERIFY, 153
SWAP, 129
SXMSB, 50, 52

SYNCMOD, 101
SYSCTL, 102, 105
TA, 94, 95
TALATCH, 96–98
TARGANY, 132
TB, 94, 95
TBDRPOS, 54, 59
TEXTXPOS, 55, 59
TEXTYPOS, 55, 59
TIMERA, 93–95
TIMERB, 93, 94, 96
TK0, 129
TOD50, 94, 96
TODAMPM, 94, 96–98
TODEDIT, 94, 96
TODHOUR, 93, 94, 96–98
TODJIF, 93, 94, 96–98
TODMIN, 93, 94, 96–98
TODSEC, 93, 94, 96–98
TOUCH1XLSB, 137, 138
TOUCH1XMSB, 137, 138
TOUCH1YLSB, 137, 138
TOUCH1YMSB, 137, 138
TOUCH2XLSB, 137, 138
TOUCH2XMSB, 138
TOUCH2YLSB, 137, 138
TOUCH2YMSB, 138
TRACK, 128, 129
TXEN, 102
TXIDLE, 115
TXPH, 114, 115
TXQ, 115
TXQEN, 115
TXRST, 115
TXSZLSB, 114, 115
TXSZMSB, 114, 115
UFAST, 105
UPDN1, 137, 138
UPDN2, 137, 138
UPSCALE, 59
USEREAL0, 132
USEREAL1, 132

213

V400, 54
VDRQ, 136
VEQINH, 136
VFAST, 59
VFDC0, 136
VFDC1, 136
VGAHDTV, 59
VICIII, 136
VIRTKEY1, 102, 105
VIRTKEY2, 102, 105
VIRTKEY3, 102, 105
VLOST, 136
VOICE1CTRLRMF, 64
VOICE1CTRLRMO, 64
VOICE2CTRLRMF, 64
VOICE2CTRLRMO, 64
VOICE2FRQHI, 63
VOICE2FRQLO, 63
VOICE2PWHI, 63
VOICE2PWLO, 63
VOICE2UNSD, 63
VOICE3CTRLRMF, 64
VOICE3CTRLRMO, 64
VOICE3FRQHI, 63
VOICE3FRQLO, 63
VOICE3PWHI, 63
VOICE3PWLO, 63
VOICE3UNSD, 63
VOICEXCTRLGATE, 64
VOICEXCTRLPUL, 64
VOICEXCTRLRNW, 64
VOICEXCTRLSAW, 64
VOICEXCTRLTRI, 64

VOICEXCTRLTST, 64
VOICEXFRQHI, 63, 65
VOICEXFRQLO, 63, 65
VOICEXPWHI, 63, 65
VOICEXPWLO, 63, 65
VOICEXUNSD, 63, 65
VPOS, 53, 54
VRFOUND, 136
VRNF, 136
VS, 50, 52
VSYNCP, 59
VWFOUND, 136
WGATE, 129
WRCMD, 129
WTREQ, 129
XINV, 138
XPOSLSB, 55, 59
XPOSMSB, 55, 59
XSCL, 50, 52
YINV, 138
YSCL, 50, 52

Row Mask, 42
RXNORMAL, 116
RXONLYONE, 116

screen RAM, 26
STARTTX, 116
STOPTX, 116

Texture Scaling, 81
TIB, 123, 126
Track at once, 126
Track DMA, 126
Track Information Block, 123, 126

214

	System Memory Map
	Introduction
	MEGA65 Native Memory Map
	The First Sixteen 64KB Banks
	Colour RAM
	Additional RAM
	28-bit Address Space

	$D000 – $DFFF I/O Personalities
	CPU Memory Banking
	C64/C65 ROM Emulation
	C65 Compatibility ROM Layout

	VIC-IV Video Interface Controller
	Features
	VIC-II/III/IV Register Access Control
	Detecting VIC-II/III/IV

	Video Output Formats, Timing and Compatibility
	Integrated Marvellous Digital Hookup™ (IMDH™) Digital Video Output
	Connecting to Naughty Proprietary Digital Video Standards

	Frame Timing
	Physical and Logical Rasters
	Bad Lines

	Memory Interface
	Startup Base Addresses
	Relocating Screen Memory
	Relocating Character Generator Data
	Relocating Colour / Attribute RAM
	Relocating Sprite Pointers and Images

	Hot Registers
	New Modes
	Why the new VIC-IV modes are Character and Bitmap modes, not Bitplane modes
	Displaying more than 256 unique characters via "Super-Extended Attribute Mode"
	Default Bit Fields (when GOTOX bit is cleared):
	Bit Fields when GOTOX bit is set:

	Using Super-Extended Attribute Mode
	Full-Colour (256 colours per character) Text Mode (FCM)
	Nibble-colour (16 colours per character) Text Mode (NCM)
	Alpha-Blending / Anti-Aliasing
	Flipping Characters
	Variable Width Fonts
	Raster Re-write Buffer

	Sprites
	VIC-II/III Sprite Control
	Extended Sprite Image Sets
	Variable Sprite Size
	Variable Sprite Resolution
	Sprite Palette Bank
	Full-Colour Sprite Mode

	VIC-III Errata Level
	VIC-III Errata Levels

	VIC-II / C64 Registers
	VIC-III / C65 Registers
	VIC-IV / MEGA65 Specific Registers

	Sound Interface Device (SID)
	SID Registers

	F018-Compatible Direct Memory Access (DMA) Controller
	F018A/B DMA Jobs
	F018 DMA Job List Format
	F018 11 byte DMA List Structure
	F018B 12 byte DMA List Structure
	Performing Simple DMA Operations

	MEGA65 Enhanced DMA Jobs
	Texture Scaling and Line Drawing
	Inline DMA Lists
	Audio DMA
	Sample Address Management
	Sample Playback frequency and Volume
	Pure Sine Wave
	Sample playback control

	F018 ``DMAgic'' DMA Controller
	MEGA65 DMA Controller Extensions
	Unimplemented Functionality

	6526 Complex Interface Adapter (CIA) Registers
	CIA 6526 Registers
	CIA 6526 Hypervisor Registers

	4551 UART, GPIO and Utility Controller
	C65 6551 UART Registers
	4551 General Purpose I/O & Miscellaneous Interface Registers

	45E100 Fast Ethernet Controller
	Overview
	Differences to the RR-NET and similar solutions
	Theory of Operation: Receiving Frames
	Accessing the Ethernet Frame Buffers
	Theory of Operation: Sending Frames
	Advanced Features
	Broadcast and Multicast Traffic and Promiscuous Mode
	Debugging and Diagnosis Features

	Memory Mapped Registers
	COMMAND register values

	Example Programs

	45IO27 Multi-Function I/O Controller
	Overview
	F011-compatible Floppy Controller
	Multiple Drive Support
	Buffered Sector Operations
	Reading Sectors from a Disk
	Track Auto-Tune Function
	Sector Skew and Target Any Mode
	Disk Layout and 1581 Logical Sectors
	FD2000 Disks
	High-Density and Variable-Density Disks
	Track Information Blocks
	Formatting Disks
	Write Pre-Compensation
	Buffered Sector Writing
	Floppy Track DMA
	Using Floppy Track DMA
	Understanding the Limitations of Floppy Drives

	F011 Floppy Controller Registers

	SD card Controller and F011 Virtualisation Functions
	SD card Based Disk Image Access
	F011 Virtualisation
	Dual-Bus SD card Controller
	Write Gate
	Fill Mode
	Selecting Among Multiple SD cards
	SD Controller Command Table

	Touch Panel Interface
	Audio Support Functions
	Other Audio Features
	Mixer Feedback Registers
	8/16 Bit Stereo Digital Audio Registers
	Pulse Width vs Pulse Density Modulation

	Miscellaneous I/O Functions

	4541 Serial Bus Controller
	Overview
	Features of the 4541
	Supports Enhanced Serial Protocol Variants
	Interrupt Enabled Processor Offload
	Processor Speed Independence
	Co-Existence through Open-Collector Logic

	Theory of Operation
	Examples
	Reading the DOS channel status

	Command Reference
	Register Table
	Serial Bus Timing
	Send Byte Under Attention
	JiffyDOS™ Protocol Solicitation
	JiffyDOS™ Send from Controller to Peripheral
	JiffyDOS™ Controller Receive from Peripheral
	Talker to Listener Turn-Around
	Send Byte With End-or-Indicate (EOI)
	Receive Byte

	Optional Integrated Data-Logger
	Extracting Data from the Data Logger

	Reference Tables
	Units of Storage
	Base Conversion

	Supporters & Donors
	Organisations
	Contributors
	Supporters

	INDEX

